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Abstract

This report documents a research conducted into the design of brain-computer interface systems. It
describes relevant aspects of neuroscience, signal processing and arti�cial intelligence. It implements
and describes a system that uses recorded electroencephalogram from a persons scalp and �lters it, se-
lects and extracts features, and lastly, uses it to train three di�erent classi�ers, one linear and two
non-linear. Feature selection is based on the class overlap of the signals that relate to the features and
is measured using Davis-Bouldin indices. The predictions of the classi�ers can be used for the naviga-
tion of a mobile robot in up to four di�erent directions. Results are varying but interesting questions
are rased. Professional research practice is omnipresent in most design choices for which statistical or
theoretical reasons are given. It proposes an outline of a design for a practical brain-computer interface
system based on the selected features and techniques.

Keywords: Brain-computer interface systems, electroencephalogram, neuroscience, signal preprocess-
ing, feature selection and arti�cial neural networks.
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Chapter 1

Introduction

For many years researchers have been intrigued by the biological brain, its structure and functionality

as well as its immense computational power, a result of the interaction of it's basic elements, the neu-

rons. Although the brain has been a research topic for hundreds of years, it was not until the early 1940

that researchers [40] were able to devise a unit which conformed with the logical architecture of the

biological neuron. This arti�cial neuron was capable of performing elementary logical operations on its

inputs and determining the truth value of any binary logical operation when connected in a temporal

sequence, thus resembling its biological counterpart - the neural network. [2] The arti�cial neurons

could either be emitting a signal or not, i.e., on or o�. This is also true for biological neurons which

output spikes of electrical impulses which become detectable on a persons scalp as a result of the sheer

number of neurons that are active at any given time. Each individual spike is rather uninformative of

the state of the whole brain but the sequence and timing of a collection of these are possible indicators

of a persons intentions. The rhythms, commonly referred to as electroencephalogram (EEG), that are

produced by the spikes have been used by software which is designed to detect the intention of the user

and apply this information to a practical problem such as controlling a cursor on a computer screen

[36] or a mobile robot [31]. Both have a great practical application for individuals that su�er from

severe cases of amyotrophic lateral sclerosis, brainstem stroke or injury to brain or spinal cord and are

in a locked-in state where they have no voluntary control over their muscles.

These brain-computer interface (BCI) systems are the focus of this report which describes research

into BCI systems in general as well as their function speci�c parts which are signal processing, feature
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CHAPTER 1. INTRODUCTION

selection and extraction, and classi�cation.

Problem statement and project type

EEG can be considered as stochastic processes with little or no correlation between their shape and

the brain function that they encode. Statistical methods must therefore be applied to �nd descriptive

features in the EEG which can be used for the training of classi�ers that will learn to map EEG

components to speci�c brain functions. This is what the bulk of this project is about, i.e., a research into

the design of a system that can extract EEG components and used them to predict di�erent intentions.

This involves thorough research into statistical feature selection and classi�cation techniques, as well

as signal acquisition and processing.

Goals

The desired outcome of this project was, �rstly, a better understanding of proper research conduct,

techniques, documentation and, secondly, to develop further competence in applying recognised signal

processing and arti�cial intelligence techniques to a practical problem and draw valid conclusions from

the results and experience.

What the practical aspects are concerned, the goal was to create a design outline of an applica-

tion which could be implemented to produce a practical real-time BCI system which could control a

mobile robot in one of up to four directions based on predictions of user intentions using selected EEG

features. Each part of the system should be chosen from a number of candidates on the basis of a

statistical measure.

Project overview

This project included theories from a number of di�erent �elds such as neuroscience, biological sciences,

anatomy, calculus, linear algebra, boolean logic, signal processing, algorithms, machine learning, pro-

gramming, software engineering and research practice & methodology. Some of these to more extent

than others such as theories from neuroscience and signal processing which the author was not familiar

with prior to the project. These were therefore given priority during literature reviews and background

2



CHAPTER 1. INTRODUCTION

research as well as some emphasis in the documentation.

Relevant courses and materials beyond curriculum

Two terms of taught courses preceded this project and some of them provided valuable knowledge in

related areas as well as an opportunity to apply standard techniques to a practical problem. These

courses are listed below, accompanied by a short summary of the topics which they covered that were

relevant to this project.

• CC482−G−AU Machine learning and data mining (Dr. P. Scott):

� Strength and limitations of machine learning techniques.
� Application of machine learning techniques.
� Evaluation of learning procedures.
� Practical applications of machine learning techniques.
� Supervised/unsupervised learning.
� Neuron models.
� Activation functions.
� Feed-forward neural networks (perceptron, RBF networks).
� Error-backpropagation algorithm.
� The delta learning rule.
� Gradient descent methods.
� Competitive learning.
� Clustering (Kohonen nets).
� Over�tting.

• CC461−G− SP Arti�cial neural networks (Dr. J. Gan):

� Practical applications of arti�cial neural networks.
� Supervised/unsupervised learning.
� Neuron models.
� Activation functions.
� Feed-forward neural networks (perceptron, RBF networks, SOM networks).
� Learning rules.
� Clustering (SOM, K-NN).

• CC402−G− SP Professional practice & research methodology (Professor R. Turner):

3



CHAPTER 1. INTRODUCTION

� Experimental procedures
� CC401 project guidelines.
� Research methodology.

• CC483−G−AU Evolutionary computation (Dr. Q. Zhang):

This module include workshops where MATLAB was used to program various algorithms. This
proved to be very useful in this project since most of the code was written in MATLAB.

• CC468−G− SP Fuzzy logic and hybrid systems (Dr. H. Hagras):

This module also included workshops where robot controllers were programmed in C/C++ which
was also the case in this project.

This project required extensive background knowledge of other topics that went beyond the MSc

curriculum. Most of them were related to neuroscience and signal processing for which individual

investigations needed to be conducted. These theories were omnipresent throughout the project and

constituted for more than 3/4 of the total background research. Becoming familiar with these topics

required signi�cant e�ort and determination as well as much experimentation. Some of these were

not included in the report for reasons established with experimentation and background research. The

following is a summary of the topics.

• Neuroscience :

� Biological neurons.
� Biological neural networks.
� Motor cortex.
� Primary somatosensory cortex.
� Association cortex (Somatosensory, visual, auditory).
� Neural pathways to muscles.
� EEG.
� Brain rhythms.

• Signal processing :

� Feature domains (spatial, frequency, time and time-frequency).
� Principal component analysis.
� Independent component analysis.

4
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� Filtering.
� Wavelets.
� Fourier transform.
� Spectral density of signals.
� Autoregressive models.
� Digital to analog conversion (for di�erent types of �lters).
� Signal re-sampling.
� Laplace probability density.
� Learning vector quantisation networks.
� Probabilistic neural networks.

Related work

BCI systems have been subject to extensive research and improvements, most notably by a group

from the Department of Medical Informatics of Graz University of Technology in Austria lead by

G. Pfurtscheller. Their research involves, among others, the classi�cation of motor imagery related

EEG [55] and [53], using EEG produced by the event-related desynchronization and event-related syn-

chronization phenomena for classi�cation [52] and classi�cation of movement related EEG [46]. They

document having used learning vector quantisation neural networks [57], while others have also tried

Multiple monotonic neural network [70] and linear classi�ers [74] and [4] which performed surprisingly

well considering the non-linear nature of the EEG.

The applicability of BCI system in practice has also been studied. One paper is of special interest

since it is closely related to this project as it involves EEG-based BCI systems designed to control a

mobile robot. C. Kyoung ho and M. Sasaki [31] describe a system that can learn to control a mobile

robot when trained with EEG and user feedback.

Other related research include the work of C. Guger et al. [25], M. Middendorf et al. [42], G. E.

Birch et al. at the Neil Squire Foundation [5], B. Obermaier et al. [47], W. D. Penny et al. [49], B. O.

Peters et al. [51] and E. J. X. Costa and E. F. Cabral Jr. [13].

Report structure

The report begins by giving a general overview of the problem domain in chapter 2 where di�erent as-

pects of a typical BCI system are described. The methodology that was adopted is described in chapter

5
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3, and the results obtained by applying the respective techniques are given in chapter 4. Chapter 5

contains a discussion on the choices made in 3 and the results in 4 as well as general considerations

on the project. Project management issues are discussed in section 6, and the report is concluded in

chapters 7 and 8 where future extensions are discussed.

Readers are advised to make use of the summary of abbreviations, notation and symbols provided

in appendix A whilst reading this report.

6



Chapter 2

Background

This chapter introduces the theories that underlie BCI systems development. It touches upon topics

such as neuroscience, EEG, signal preprocessing, �ltering, feature selection and classi�cation.

The most important aspect of BCI systems and classi�cation systems in general, on all but the

simplest data sets, is being familiar with the data, i.e., understanding its features and how it is obtained.

Without this knowledge, one may obtain reasonable results but there is no guarantee that the same

method will prove e�ective for a di�erent data set belonging to the same population, e.g., with a

di�erent test subject. The reason for this is that data sets may posses features which are special for

the particular set and contain idiosyncrasies which are not re�ected in the whole population. It is,

therefore, pivotal that the data source and the structure of the data is examined closely to ensure that

the classi�cation is performed on the data which best describes features of the whole population.

Following sections are devoted to this important part of any BCI system. Starting with the brain

and its structure, from which the data will ultimately be extracted from, followed by a discussion on

di�erent types of signals which can be obtained from the brain. The remainder of the chapter has

been designated to other aspects of the project such as the experiments, �ltering, feature selection and

extraction and, lastly, classi�cation.

7



2.1. THE BRAIN AND NERVOUS SYSTEM CHAPTER 2. BACKGROUND

2.1 The brain and nervous system

The human brain, its structure and functionality, has intrigued researchers for many years and although

extensive theoretical knowledge has been accumulated in this area, [33] [32] [24] [43], it is still subject

to speculations regarding its basic elements - the neurons - and how certain neuronal �ring patterns

can result in a unique perception of, say, ones surroundings.

The signals that were used in the system were directly obtained from the scalps of test subjects.

These signals were then processed and classi�ers trained to classify them according to the test subjects

intentions. The design of the system was heavily reliant on knowledge of the human brain. For example,

the signals which are used to train the classi�ers in BCI systems are often produced by visualising motor

activity and the part of the brain which is of interest is thus the area of the brain which controls these

functions. If one did not know that the brain is highly conductive and that activity from a con�ned

area of the brain can in fact be detected throughout the brain, one might discard information obtained

from a large part of the brain if the respective area were not directly related to motor activity. This

might reduce the performance of the system as valuable information might be lost. The remainder of

this section will, therefore, describe some relevant aspects of the brain's structure on a neuronal and

global level which served as a foundation for some considerations which arose during the design and

implementation phases of the system.

2.1.1 Neural networks

Although the body has many di�erent types of neurons, this report will only consider the types of

neurons which are associated with the brain. The brain has a number of functionally and structurally

distinct neurons but a detailed description of each of them is beyond the focus of this paper.1 The

neurons are the building blocks for neural networks such as the brain. They have limited functionality

by themselves but are a part of complicated system capable of extraordinary achievements, or with

the words of A. J. Amit [2]:

...complex function must be a result of the interaction of large numbers of simple elements...

1Excellent texts on this subject include [9], [34], [8] and [38]

8



CHAPTER 2. BACKGROUND 2.1. THE BRAIN AND NERVOUS SYSTEM

The basic elements of neural network are the neurons and the synapses between them. The system

under consideration (neural networks) can be divided into three parts which are input, central pro-

cessing and output. [1] These are in fact also the properties of each individual neuron where they are

referred to as the dendritic arbor, soma and axon, respectively. [2] Each neuron in the network can

have synapses2 connected to a number of other neurons which increases the complexity of the network

and thus the di�culty of modelling its behaviour. It is hard to conceive the immense complexity of

a neural network considering that the brain has about 1011 neurons, each of which has about 104

synaptic inputs from other neurons. [2]

The inputs to a motor neuron3 ,depicted in �gure 2.1, are often referred to as spikes which are

basically outputs from other neurons that share a synapse with that neuron. A spike is an action

potential (AP), i.e., a certain voltage produced by a neuron and carried along its axon, typically of the

order of tens of millivolts. [38] [8] [2] Potentials may be reduced as they travel between two neurons,

i.e., the pre-synaptic potential may be less than the post-synaptic potential (PSP). The reason for this

is that synapse between two neurons are strengthened if both neurons �re in a short period of time

and weakened otherwise. This allows the neural network, and thus the brain, to learn. [8] The higher

the PSP, the greater the probability of the receiving neuron �ring. [2]

A simpli�ed neuron is depicted in �gure 2.1. The neuron receives N inputs from N other neurons.

The potential travels along the neurons dendritic arbor with an amplitude determined by the synaptic

strength between the transmitting neuron and the receiving neuron. A value v is calculated, e.g., the

linear sum of the amplitudes of the inputs, after which the neurons output is determined by the output

of the function ϕ(v)

2.1.2 The cortex

The outer layer of the brain is the cerebral cortex. [38] [8] This layer is also referred to as the neocortex

which is related to the fact that this part of the brain is evolutions latest achievement in this area. [20]

[38]
2Although, the synapses are actually the point where two axons meet, they shall be used to describe the connection

between two neurons in the remainder of this report.
3Motor neurons are neurons that aid to produce motor action such as limb movement and the only type of neurons

considered in this report.

9



2.1. THE BRAIN AND NERVOUS SYSTEM CHAPTER 2. BACKGROUND

x
∑

y

Figure 2.1: The structure of a neuron with input x and output y.

The preceding discussion on neurons makes assumptions regarding the generality of their structure.

This is true in the sense that two neurons in di�erent areas of the brain may have the same logical

structure while being used for two distinct purposes. For example, auditory and visually related

neurons can have a similar structure although they are positioned in di�erent areas of the brain. [38]

[8] Considering earlier BCI research, e.g. [57], where test subject have been asked to imagine movement

of their limbs as dictated by visual or auditory cues,4 one can assume this indicates that there are

especially three areas of the brain interesting to this kind of research which include the motor cortex

which is responsible for motor activity, the visual cortex which processes optical signal and the auditory

cortex which contains neurons dedicated to processing acoustic information. [38] [8] These areas are

depicted in �gure 2.2 and described in more detail in the following table:

• The motor cortex is located in the back of the frontal lobe. The motor cortex has three parts

which are indexed with respect to �gure 2.2:

Area 1 is the primary motor area (PMA) which contains neurons that control muscle activity.

[8]

Area 2 is the supplementary motor area which orders movements in a time sequence. It is related

to voluntary and repeated movements. [38]

Area 3 is the premotor area which contains neurons that are used in planning movements. [38]

• Area 4 is the primary visual cortex which translates signals that are transmitted from the visual

system into signals that, for example, give us a perception of our surroundings. [8]

• Area 5 is the primary auditory cortex and is mostly hidden from view and receives most of its

inputs from the auditory system. [8]
4this will be discussed in greater detail in section 2.2
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Figure 2.2: The cerebral cortex. Modi�ed from [44].

Areas 2 and 3 receive their input from the parietal lobe where they get a perception of the persons

environment as well as the position of her limbs. These areas are both known to be responsible for

the planning of voluntary movement and especially complex sequences of movements. Signals that are

transmitted from the frontal lobe and the parietal lobe, see �gure 2.2, and encode what actions are

desired to areas 2 and 3 are transformed in area 1 into signals that encode how they are to performed.

[38]

Area 1 is especially interesting in the context of BCI systems since the areas that control di�erent

body parts are readily located on the scalp. This is better described in �gure 2.3.

2.1.3 Brain rhythms

The brain engages in a number of di�erent activities during the course of a single day, many of which

take place without our awareness and many are a direct consequence of our intentions such as motor

functions - omitting the philosophical discussion of our intentions as an activity. Some of these can be

carried out with seemingly little e�ort, such as sleep, while others require immediate response, such as

re-gaining balance after stumbling. The di�erence in the "intensity" of brain activities is most evident

11
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Figure 2.3: The structure of the primary motor area presented as a somatotopic map. From [48].

Rhythm Frequency (Hz) Amplitude Activity
δ 0.5− 3.5 High Deep sleep
θ 3.5 - 8 Varying Light sleep
α 8 - 13 High Relaxation
β 13− 22 Low Concentration
γ 22− 45 Varying Binding (creating perception)

Table 2.1: The frequencies, amplitudes and activities that are related to the α, β, δ, θ and γ rhythms.

in the brain rhythms which are caused by the �ring of the brains neurons and are summarised in the

below which was adopted from [38] and [8].

An additional brain rhythm is the µ rhythm which lives in the upper α band. In fact, µ rhythms

are α rhythms con�ned to the motor cortex.

2.1.4 Electroencephalography

An obvious property of any BCI system that uses novel data is that the brain rhythms must be recorded

from the brain. There are di�erent ways of doing this, some more time consuming than others.

12
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Recording techniques are commonly divided into two groups; invasive and non-invasive. Invasive

techniques such as positron emission tomography, and have been used for BCI systems [71] [3], are very

costly and time consuming. Non-invasive methods (the obvious choice for this paper) such as recording

brain activity with an electroencephalograph which records the electrocortical activity referred to as

electroencephalogram (EEG), and includes placing electrodes on the scalp of the subject, are much

cheaper and have been used to produce satisfactory results. A few of these include the papers by

Pfurtscheller et al [57], Babiloni et al [4], Ramoser et al [62] and Cincotti et al [10].

EEG are often related to particular behaviours. [38] The EEG that can be sensed on a persons

scalp is the interplay of several neurons �ring and most apparent in the electrode that is closest to

the respective area of the cortex.5 The EEG that can be sensed on the scalp gives an idea on how

synchronised the neural �rings are, i.e., the signal will be strong if they �re at the same time and weak

if they �re irregularly. [38] Another reason for the satisfactory applicability of EEG in BCI systems is

that most of the conscious activities that we engage in are formulated in the cortex6 and thus close to

the electrodes. Using enough electrodes will allow for the recording and localisation, to some extent,

of EEG that are related to certain activities.

2.2 Experiment

There are two approaches to signal acquisition for BCI systems; using new signals obtained through

experiments or using existing, e.g., the Graz data sets. The former is more attractive in this case

since new, exciting exercises can be speci�ed for the test subjects to do during the experiment. The

imagination of limb movement is widely adopted and the EEG that are obtained in this way are referred

to as spontaneous. Another approach which measures evoked signals, i.e., signals that are produced by

a change in the persons environment such as a blinking light, is the P300 [22] [19] method. The P300

method requires the subject to look at a screen where objects, e.g., boxes or circles, located in the

middle of each of the four edges of a computer screen blink at di�erent rates. The EEG in the horn of

the Occipital lobe of the cortex, �gure 2.2, can then be recorded and if the subject looks at, say, the
5Although the brain is highly conductive and most EEG can be detected to some extent in any part of the brain. [38]
6Specialised systems such as the neural pathways that carry signals from the eyes to the primary visual cortex are

known to �lter and preprocess the signals along the way. [11]

13



2.3. FILTERING SIGNALS CHAPTER 2. BACKGROUND

left most object, then the EEG will contain �uctuations which correspond to the blinking rate of that

light which would, say, move a mouse cursor to the left. One drawback of the P300 method is that it

requires the subject to have control of her eyes since it is totaly dependent on the gaze direction.

Spontaneous methods do not require any muscle control and thus very well suited for people that

su�er from total paralysis. A crucial design factor in such an experiment is how to communicate the

nature of the exercise to the test subject, e.g., should she imagine moving her left or right arm. One

immediately obvious approach is to use auditory cues such as a recording of the spoken instructions.

This, however, introduces some complications such as the possible variation in the length of di�erent

instructions as well as the contamination of the EEG caused by the activity in the primary auditory

cortex. This contamination is caused by the fact that, in the case of the spoken word, no one instance

of the utterance of a word gives much information on the meaning of the word. Rather, audio is

dependent on series of instances which will engage the auditory system for a period of time which

interferes with EEG over the whole cerebral cortex. Visual cues, such as a blinking light or an arrow

on a computer screen, will cause less interference of this kind because of the nature of the visual system

which interprets still pictures of what we see. [11]

Timing is a crucial factor in experiments of this kind since the brain is capable of immense parallel

processing [2] and thus able to process much information in a relatively short period of time. The

brains response time must, therefore, be established and taken into account when designing a protocol

for the experiments.

EEG are very weak compared to the potentials produced by muscle activity which are approximately

1000 times stronger. Even eye movements or blinking can produce a potential powerful enough to

completely submerge the EEG in noise. Hence it becomes crucial that the test subject is as relaxed as

possible during the experiment.

2.3 Filtering signals

EEG can contain a lot of noise like the above discussion indicates. This, as well as interference from

the power mains, makes the need for proper �ltering apparent for a BCI system of this sort. The

equipment, described in section 3.1, ampli�es and �lters the signals during recording. This reduces

some of the noise but additional �ltering is still required to isolate the various frequency bands. A
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brief description is given in the below.

2.3.1 Electronic �lters

Filters for signal processing come in many di�erent �avors such as digital or analog, linear or non-

linear. [69] The ones that are considered in this paper are analog and linear, i.e., they operate on

continuously variable signals and they apply linear transformation to the signals. One type of analog

�lters performs a transform in the Z-domain which is a complex frequency domain representation of

the discrete time domain signal. [60] Their operation is described as . . .

H(z) =
B(z)
A(z)

=
b0 + b1z

−1 + b2z
−2 + . . . + bNz−N

1 + a1z−1 + a2z−2 + . . . + aMz−M
(2.1)

where N is the input size and M is the �lter order. One such is the Butterworth �lter. It's designed

in such a way that the frequency response is maximally �at, i.e., minimal loss of information occurs

where in the frequency band the �lter's instructed to preserve. [60] A consequence of this is that the

Butterworth �lter requires a higher order to implement the same stopband than, say, a Chebyshev �lter.

This is better described in �gure 2.4.

Figure 2.4 illustrates the comparison of two �lters, Butterworth and Chebyshev, of orders 1, 2,

4, 6 and 10 as they perform bandpass �ltering with a passband between 0.5Hz and 45Hz which is

identical to highpass �ltering at 0.5Hz and lowpass �ltering at 45Hz. One can notice that the frequency

response is smoother in the passband of the Butterworth �lter which results in minimal loss of valuable

information. The �gure also shows that less information remains in the cuto� frequencies when the

order is high.

Any number of frequency bands can be isolated with electronic �lters. This is very useful when,

say, comparing the classi�cation accuracy of a system with signals from a speci�c frequency band or a

combination of these.

Noise in EEG can also be caused by muscle activity. The blink of an eye or neck movements

distinguish them selves from neural activity by being stronger in the order of thousands. However,

blinking is so infrequent relative to a reasonable sample rate that their e�ect can be averaged out.
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Figure 2.4: The comparison between the frequency response of two �lters, the (a) Butterworth and

(b) Chebyshev of order 10.

2.4 Feature selection

There are many issues and relationships between these that need to be considered when designing a BCI

system such as signal acquisition, experimental procedure, �ltering, feature selection and classi�cation.

The experimental procedure, for example, may a�ect the choice of features. Examples of this are the

P300 which engages the primary visual cortex and the motor imagery that engage the motor cortex

and parts of the frontal lobe. Feature selection a�ects the classi�cation accuracy since some features

may be more descriptive than others, e.g., some may have less class overlap and thus easier to with a

linear classi�er.

A BCI system that is designed to classify EEG as, say, left and right hand imagery, should preferably

use some statistical features of the EEG rather than the raw (or �ltered) EEG. The reason for this

is the relatively small di�erence of the correlation between the shape of a EEG and its corresponding

imagery action and that between the shape of the same EEG and any other imagery action. The

stochastic nature of EEG also supports this argument since a distinct combination of inclines and
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declines in the signals amplitude are very unlikely to happen at the same time for a speci�c imagery

movement. This may, however, not be true for executed movements.

Features can also be related to other aspects such as the spatial location of the signal and the time

window in which it is recorded. A description of a few of these is given below.

2.4.1 Spacial features

The brain has di�erent areas devoted to di�erent functions as was described in section 2.1.2. One

may �nd that certain areas of the brain are more informative than others given the nature of the

exercises the subject is asked to perform. Also discussed in section 2.1.2 is the location of the motor

cortex which is the aft most region of the frontal lobe. One could therefore assume that this area in

particular would be interesting when looking for descriptive features for motor related potentials. This

assumption is supported by a number of texts on neuroscience [34], [8] and [38].

Researchers have tried a number of combinations of spacial features located over areas like the

motor cortex, [74] and the frontal lobe, [57].

2.4.2 Time domain features

To this domain belong the features that are obtained by examining how a signal behaves over a period

of time. A large array of signal data can be recorded during a single experiment. For example, consider

a situation where six seconds of signals are recorded for each trial of an experiment at 256 samples per

second in an experiment that consists of 20 trials. This is a reasonably sized set to work with but some

information may be lost if one uses a measure such as the mean or variance since the samples that

contain useful information may only be a small fraction of the 1536. It is therefore useful to choose

a part of the signal from which information is to be extracted from. These parts are referred to as

windows and di�erent techniques have been applied to their selection:

• Single window : Involves choosing a window, the �rst second for example, of the trial that may

contain useful information and then use the same window of the next trial.

• Sliding window : Slides the chosen window a predetermined amount between trials. If the window

in the �rst trial is, for example, from 0s to 1s, then it could be from 1s to 2s in the next and so
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Trial 2Trial 1
1 2 3 4 5 6 1 2 3 4 5 6

(a) Single window (b) Sliding window (c) Multiple window

1 1 1 1 1 2 3 4 21 11

. . . . 

Figure 2.5: The features that can be obtained by using a (a) single window, (b) sliding window and

(c) multiple windows.

on.

• Multiple windows: Any combination of the above can also be used to obtain more features.

The features that can be obtained using these techniques are depicted in �gure 2.5.

During an experiment where visual cues are used to inform the subject of the exercise she should

perform cause a response in the brain which may contain valuable information. This means that in

the beginning the brain is responding to the stimuli and going into the state that it associates with

the information given by the cue. The activity that proceeds voluntary action is called the readiness

potential (RP) and is recordable and thus a potential source of information. RPs proceed conscious

intentions by an average of 350 milliseconds according to [37]. This sudden burst of RP is perhaps

the strongest indicator of the type of exercise that the brain will try to maintain throughout the trial

and thus interesting to consider. Depending on how fast the brain detects light, such as visual cues,

one could choose the �rst 500 milliseconds, for example, and use that as a single window of length 0.5

second in each trial. This might lead to interesting results and will be addressed later in this paper.

Once a window type and size has been determined, one can apply statistical measures on the

extracted signal to �nd features such as the mean, variance and/or standard deviation. As mentioned

earlier, obtaining these measures for a large window may reduce the amount of valuable information

but they should be more descriptive for a reasonably sized window.
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More sophisticated techniques have also been used for this purpose such as calculating the loga-

rithms of the normalised variances [46] and using eigenvalues to determine the signals that maximise

the di�erence in variance [62].

2.4.3 Frequency features

The brain is capable of producing di�erent rhythms, some of which are dependent on the function

the brain is performing, section 2.1.3. These rhythms have a frequency and amplitude which can

analysed and used to obtain descriptive features. There is a certain delay between any two �rings of a

neuron which is called the absolute refractory period and lasts for up to two milliseconds after which

the neuron can �re again. [2] This delay allows the neurons to synchronise their �rings which they do

when the brain performs certain tasks, such as motor imagery. The number of neurons that participate

in this vary from task to task. This behaviour can be used as a feature by measuring the energy which

increases when neurons �re (or don't �re) in either increasing numbers or synchronously.

A number of techniques for obtaining features from frequency components have been used in BCI

systems and a few of these are described here.

Fourier transform

Fourier transform is a method for mapping a time domain representation of a signal into a represen-

tation in the frequency domain. [60] It's basic function is to express a function in terms of the sum of

a sinusoidal functions multiplied by the amplitudes of the signal at di�erent frequencies. [60] Fourier

transform can be used to identify frequency components (the amplitude at di�erent frequencies) of

a signal. An example of this is depicted on �gure 2.6 which shows (a) a signal in the time domain,

and (b) the results of applying Fourier transformation on the signal which maps it into the frequency

domain. Parseval's theorem can be considered a property of fourier transform and ensures that the

power of the signal is equal in both domains. [21]

Discrete fourier transform (DFT) is fourier transform on signals where all functions are de�ned over

discrete domains, which is inevitable when using digital computers. Further discussion will therefore

only consider DFT. Formally, DFT represent a variable xk (discrete) as the sum of sinusoids:
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Figure 2.6: Two domain representations of the same signal in the (a) time domain and the (b) frequency

domain, before and after fourier transform respectively.

xk =
n−1∑

j=0

fje
2πi
n jk (2.2)

for each k = 0, . . . , n− 1, fj are the signal amplitudes and i is the imaginary unit (i2 = −1).

Due to the complexity of the formula, applying it on large data sets is impractical, especially when

considering real-time applications. A solution to this is to use the divide and conquer fast fourier

transformation (FFT) algorithm which, according to [21], reduces the complexity from O(n2) to O(n

log n). Due to the reduction in complexity that FFT o�ers, features can be extracted e�ciently. This

technique is widely used in BCI research [59] [14] [73]. The Butterworth �lter described in section 2.3

can be implemented with FFT which it uses to isolate the pass frequencies. [30]

The data that is returned by the FFT algorithm needs to be converted into power per frequency.

This can be done by explicitly calculating it, or by using a di�erent approach which includes DFT in

its calculations. One such is described below.
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Figure 2.7: The power spectral density of a sinusoidal.

Power spectral density

A signal, such as EEG, is composed of di�erent frequencies with di�erent amplitudes. The amplitude

of each frequency can be measured by �nding the spectral density of each of the frequencies which can

then be used as a feature. A measure that is directly obtainable from the spectral density is the power

spectral density (PSD) which describes the power that is carried by the signal, sometimes expressed as

watts per hertz. [21]

The power spectral density of a signal can be calculated using Welch's method which splits the

signal and calculates a periodogram for each of the subsets. This method is applied in, among others,

[72].

An interesting relation exists between PSD and DFT. PSD calculations begin, in fact, by calculating

the DFT of the signal after which the PSD is obtained using the resulting amplitudes of the DFT.

One could say that PSD is simply another representation of the information that the DFT produces.

This relationship is formally described in equation 2.3 where PSD of a signal is de�ned in the context

of DFT and �gure 2.7 illustrates the PSD of a sinusoidal function.

xk =
FkF

−1
k

2π
(2.3)

where F is the DFT of a signal f .
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Energy

The energy of a signal is a measure of its amplituds with respect to the zero-amplitude, i.e., ampli-

tudes −80 and 80 would have the same energy. This can be calculated very easily using the equation

2.4.

e =
N∑

j=1

abs(xj)2 (2.4)

where xj is the jth sample and N is the total number of samples the energy is calculated for.

Autoregressive parameters

Autoregressive parameters (AR parameters) are the parameters (φ1, . . . , φp) of a autoregressive model7

(AR) of order p. The AR model is basically a �lter with an non-zero impulse response of an in�nite

period of time, although the AR model has more functionality such as predicting future values of a

time series. [60] Equation 2.5 describes the AR model formally.

xk = c +
p∑

j=1

φjxk−j + εj (2.5)

Where εj are error terms which are independent identically-distributed random variables [60], c is

a constant, φj are the model parameters and p is the model order.

A AR model can be build using time series signals and then the parameters of that model can be

applied to new signals to produce an estimate of how much the new signals diverge from the old ones,

i.e., if the new could belong to the same series.

Adaptive autoregressive parameters (AAR parameters) di�er from AR parameters by changing

with time. [67] This is useful in online learning systems. Using AAR parameters as features has some

advantages such as, (a) the parameters are very descriptive of the spectral properties of the signals

which has the consequence that fewer parameters are required, (b) there is no need to isolate speci�c

frequency bands, and (c) an optimum set of parameters exists that can describe the signal. [66]
7The moving average part of the model is omitted here but when included, the model is referred to as a ARMA

model.

22



CHAPTER 2. BACKGROUND 2.4. FEATURE SELECTION

BCI research that involved extracting features using AR models include [45], [56] and [36], and

AAR models [66] and [57].

Many e�ective techniques exist for obtaining features like the above discussion indicates and when

given a set of signals, one needs to determine which features, or combinations there of, to use. Prefer-

ably they should be the most descriptive ones leading to the best classi�cation accuracy. Consider

a case where there are d features, then there are 2d possible feature subsets which is only a feasible

number for a very small d. This number can, however, be reduced if one knows the exact number of

features to be extracted. [6] This fact introduces a practicality limitation on performing exhaustive

search in the feature space so other techniques need to be considered. Many algorithms are available

which can e�ectively search the feature space, eliminating a subset of features at a time until the most

descriptive subset remains. Divide and conquer algorithms such as merge sort [12] and FFT are popu-

lar for performing mathematical operations on large data sets but they are not guaranteed to try every

possible feature combination. Sequential search techniques such as sequential forward elimination and

sequential backward elimination are e�cient ways of sequentially adding or eliminating features. [6]

Another technique is dimensionality reduction where feature vectors are mapped into a lower dimen-

sional space through a transform function (linear in this report). One such is the principal component

analysis (PCA) which calculates the variance of a signal by projecting it on to each axis and then

returning a dimensionally reduced coordinate system with the most descriptive projection on the �rst

axis and the second most descriptive on the second axis etc. which then correspond to the �rst, second,

etc. principal components. [28] [6]

The third search technique discussed here is the Davies-Bouldin index (DBI) [17] which measures

how much two clusters overlap. This measure indicates the extent to which the clusters are linearly

separable. For a cluster Ci, the DBI would be calculated as follows:

ϕ(Ci) =
1
n

n∑

i=1

max
i6=j

{
Sn(Ci) + Sn(Cj)

S(Ci, Cj)

}
(2.6)

where n is the number of clusters, Sn is the average distance from the elements of a cluster to

its centre and S(Ci, Cj) is the distance between the centres of the clusters. The limitation of the

applicability of the DBI in feature selection is that it only indicates how easy it would be to separate
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Figure 2.8: Two classes that are separable but give a high Davies-Bouldin index.

the clusters with a straight line. For example, a DBI for two clusters may be high although the clusters

are separable with a polynomial curve as shown on �gure 2.8. This will be discussed in more detail in

section 3.3.

2.5 Classi�cation of the signals

Some neuroscientists such as Hebb, McCulloch and Pitts began to research into models of the func-

tionality of biological neurons in the early 1940s. McCulloch and Pitts [40] showed that a simpli�ed

neuron model was capable of performing elementary logical operations depending on the inputs and

the threshold. Hebb [29] showed that arti�cial neural networks could learn by synaptic adaptation

through competition, much like their biological counterpart.

An excellent description of the similarities between neural networks and arti�cial neural networks

can be found in [2]. His arguments include, �rstly, the idea of using neural network (arti�cial) is

biologically plausible, parallel processing is a property of both and behaviour emerges through learning.
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Perceptron

A simple way of modelling the logical structure of a neural network is in the form of a perceptron, a

term �rst introduced by Rosenblatt [64], which receives a number of inputs, either from other neurons

or other sources and whose output is determined by the number of neurons in the network that �re. A

neuron �res if the linear sum of its inputs exceeds a certain threshold. This is determined by a function

ϕ which can be whatever function that allows for a distinct input-output mapping. Associative memory

can then be simulated by updating the threshold as well as numerical weights associated with each

synapse through a learning procedure. Rosenblatt's work was a progression of earlier work done

McCulloch and Pitts which was described above. Rosenblatt extended their idea to allow the model

to learn although he does not include time as a factor in his theory.

A Perceptron which takes N inputs is illustrated in �gure 2.9 and is described formally as . . .

vj =
N∑

i=0

wjixi, yj =





1, iff vj ≥ θ

0, iff vj < θ
(2.7)

where xi is the ith input, wji is the numerical weight that is associated with the ith input and the

jth neuron, and if vj is greater or equal to zero then the jth output, yj , is 1, −1 otherwise. Note that

x0 is always 1 and w0 is the bias which determines the threshold θ.

When training a network using supervised learning [28], one has to de�ne the desired output, from

now on referred to as z and is simply the M element vector (z1, . . . , zM ), of the network when given

a speci�c input. If the prediction of the network, y, is di�erent from z, then the weights need to be

updated which is done by �nding the update factor, i.e., in which direction the weight vector needs to

be updated to minimise the error z - y. The delta rule [41] is one such techniques and it builds on the

Hebb rule introduced by Hebb [29]. It elaborates on the Hebb rule in two important ways: (1) it only

updates the weights when the network would have given the wrong output, and, (2) it includes the

error, (z - y), as a part of the rule. The amount the weights are updated using the delta rule is . . .

∆w = α(z − y)x (2.8)

where (x) is the input vector and α is the learning rate which determines the "step size" of the

gradient descent [41].
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Figure 2.9: The architecture of a Perceptron that takes N inputs and has two output neurons.

These properties of the Perceptron make it a linear classi�er capable of separating linearly separable

clusters. In fact, Rosenblatt proved this property in his �xed-increment convergence theorem [65].

In spite of this limitation, research [74] has shown that linear classi�ers are applicable in BCI system

given that the features are selected with care.

For non-linearly separable data, a more complex model is needed. A natural way of accommodating

such increase in dimensionality of the data is to extend the perceptron by adding a new layer of

hidden neurons which add dimensionality to the network. The perceptron then becomes a multilayer

perceptron (MLP) [28] which obtains its outputs by applying a non-linear function f . The hidden layer

requires a more sophisticated update procedure which is provided by the backpropagation algorithm

[41] which builds on the delta rule. The structure and functionality of the MLP is similar to that

of the perceptron so it would be more interesting to examine a technique that performs non-linear

classi�cation in a slightly di�erent manner.

Radial basis function network

The Radial basis function (RBF) network [28] builds on the principle that non-linearly separable data

cast into high-dimensional space becomes more likely to be linearly separable. [15] A RBF network
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Figure 2.10: The architecture of a RBF network that takes N inputs and has two output neurons.

whose structure is depicted on �gure 2.10 is described formally as . . .

yk = ϕ




n∑

j

wkjGj(x, wh
i )


 (2.9)

where wh
i are the radial basis (RB) layer weights, x is the input vector, Gj are the RB functions,

also know as hidden functions, which can be ,for example, Gj(x) = exp

(
−‖x−c‖2

2σ2
j

)
. wji are the linear

layer weights and ϕ is the activation function of the linear layer which, according to the threshold,

determines what class should be predicted.

The RBF networks is capable of learning but the parameters that are learned are not only the

weights in the linear layer but also the parameters of the RB functions such as their centres and spreads

as well as their number. The whole RB layer can be trained with the backpropagation algorithm which

uses (z − y)2 as an error measure, or only the weights can be trained using backpropagation and the

RB function centres and spreads can be trained with, for example, a clustering algorithm such as the

k-nearest neighbour (K-NN) [41] algorithm. The linear layer is trained using backpropagation in both
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cases.

Using a clustering algorithm to train the RB function centres and spreads has several advantages.

Firstly, clustering is a unsupervised learning [28] technique which, in theory, can �nd salient features

in the signal that a human user might not be aware of. Secondly, it uses the input vector to train the

RB layer so there is no need for expensive error calculations which may make it faster.

The output, a class prediction, from the network is a result of the classi�cation that the linear layer

performs when given the results of applying the RB functions to the network input.

Learning vector quantisation network

The third and last classi�er to be described here is the learning vector quantisation (LVQ) [28] network.

LVQ networks have, similar to RBF networks, two layers with di�erent functions. The �rst layer

is the the competitive layer which employs the self-organising map (SOM) [35] algorithm, which is

an unsupervised learning procedure. Figure 2.11 depicts the architecture of a LVQ network. SOM

networks fall into a group called competitive learning networks and have the property that their neurons

compete amongst themselves to respond to the input. Only one neuron will �re with any given input

because they have mutually inhibitory connections, i.e., if on neuron is on then all others must be

o�. The neuron that wins the competition, the winning neuron, is the one whose weight makes the

smallest angle with the input, i.e., the neuron for which the Euclidean distance,
√∑N

i=1(wji − xi)2,

from the input is the smallest. The weights of the winning neuron and its neighbours are then updated

as follows . . .

∆wji = η · gj,j∗ · (xi − wji) (2.10)

where wji is the weight from the ith input to the jth neuron, gj,j∗ determines the distance between

each neuron j and the winning neuron j∗ and updates the jth neurons weights accordingly and η is the

learning rate which decreases with time. It should be noted that the neighbourhood measure decreases

as well with time thus allowing neurons that are far from the winning neuron to be undisturbed. This

learning process in the SOM algorithm is called vector quantisation and hence the networks name.

The SOM algorithm will create N clusters when using N neurons which is not a problem when less

than N classes are required since any number of clusters can be assigned to each class. The algorithm
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Figure 2.11: The architecture of a LVQ network that takes N inputs and has two output neurons.

will, furthermore, create a two dimensional feature map where the clusters are separable.

The second layer of the LVQ network operates on the feature map that the SOM algorithm produces.

It is here that the labels, the desired output z, in the training data come into the picture because the

linear layer uses them to improve the decision boundary produced by the �rst layer. The e�ect of this is

that inputs are �rst clustered in a way that naturally partitions them, making them easier to separate

linearly. The network will output whatever class the linear layer predicts when given the classes from

the competitive layer. It is most likely this property that makes LVQ networks, and its improved

relative the distinction sensitive learning vector quantisation network, popular in BCI research such as

[54], [59] and [55].

Training neural networks

A common problem in the application of neural networks is that they tend to learn idiosyncrasies of

the training data that are not necessarily true for the whole population from which the training data

is drawn from. This phenomena of over�tting would result in the network having better performance
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on the training data than the testing data which may not posses some of the characteristics of the

training data that the network has learned.

A number of techniques exists that can prevent or minimise this behaviour such as adding a weight

decay term [41] to the learning function which keeps the weights small and makes the network slower

to respond to properties that a only a small part of the data possesses.

Another more elaborate technique called cross-validation [28] involves dividing the training data

into two sets for training and validation and the network is trained with the training set while the

error is monitored by testing it on the validation set and the best performing networks weights so far

are stored and returned when training is completed. The training error and the validation error will

start to deviate when over�tting occurs which can be detected during learning.
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Chapter 3

Methodology

This chapter describes the methodology that was used in this project. It starts with describing the

experimental protocol, then the signal preprocessing then feature selection and extraction and, lastly,

classi�cation. Most of the code was written in MATLAB although some was written in C++.

3.1 Experiment procedure

The research described in this paper relied on very specialised equipment, except for the personal

computer (PC), and thus hard to replicate if one possesses only the interest. It is therefore important

to provide adequate information on this part as it may not be easily accessible otherwise. The reader

should note that most of the information was obtained from the respective producers web-pages.

EEG-Cap and ampli�er

The �rst step when preparing for the experiment was to make sure that EEG could be recorded without

complications and too much noise. A cap with 23 electrodes was used for this purpose, 21 electrodes

on the scalp, one ear reference and one ground. The two latter ones were used for later �ltering which

removes the noise cause by the body's natural rhythm. Figure 3.1 shows how the electrodes were

positioned on the cap. The cap was a Electro-Cap from Allied Products [61], shown in �gure 3.2

(a). Two caps were used, the E1-L for scalp circumference between 58 and 62 cm., and E1-M for 54

to 58 cm. circumference. Both caps have electrodes positioned according to the International 10-20
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Figure 3.1: The international 10−20 electrode setup. The letters assigned to the electrodes correspond

to their relative position over the cortex and are F=frontal lobe, T=temporal lobe, C=central lobe,

P=parietal lobe and O=occipital lobe. A1 and A2 are the ear references and the ground is located in

front of channel Fz. From [68]

speci�cation [26].

Impedance between the electrodes and the scalp was a factor when recording EEG. Using proper

�ltering techniques, however, could improve the quality of the EEG even though the impedance was

as much as 40 kΩ. [23]

The cap was then connected to an ampli�er which in this case was a 24-channel Mindset EEG

Neuromapping System, from now on simply referred to as Mindset, also provided by Allied Products.

The Mindset had a 16-bit resolution, a programmable sampling rate between 64 and 1024 samples per

second and active �ltration implemented by two fourth order Sallen-Key active �lters with a 50 to

60Hz stop band. The �lter was provided in order to reduce interference from the power mains which

in The UK is around 50Hz.

The system requirements for using the Mindset are as follows: Pentium Class or 486 PC running
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Windows 95 or NT. SCSI interface (which will be discussed in greater detail later), 8 Mbs of RAM

and 20 Mbs of available hard drive space.

The SCSI The Mindset was connected to a PC through a small computer system interface (SCSI)

card which is a PCI device that was attached to the PC's serial bus. The Mindset could be controlled

through the SCSI card but required a dedicated C/C++ library to be installed as well.

A more detailed description of the SCSI library is given in chapter 3.1.3 but a brief overview is

given here. The SCSI library can be included in any C/C++ code project and provides functionality

to control the Mindset to some extent. Some of the features that it implements are to start/stop

sampling, error detection routines and procedures for setting various parameters of the Mindset such

as the sampling rate.

Some of the code was edited by L. Citi and his modi�cations are used here with permission.

Pioneer 3-DX8 Mobile robot

The robot that was used is an ActiveMedia Robotics [63] Pioneer 3-DX mobile robot, shown in �gure

3.3 and from now on simply referred to as Pioneer. It had an arsenal of utilities such as a hard disk

drive, random access memory (RAM), micro-controller, lasers for navigation, bumpers, vision system,

compass and wireless local area network (WLAN) as well as a gripper arm. The robot that was used

in this project had a C/C++ run-time environment and a Red Hat1 Linux operating system.

Although impressive, most of the functionality of the Pioneer went unused during the experiments

which only engaged its basic functions and completely bypassed the Pioneer operating system, which

will be described in more details in chapter 3.1.4.

To operate the robot one needs a connection, either WLAN or serial, and a C/C++ program

compiled with the ARIA library under Linux or Windows 200.

The ARIA ActiveMedia Robotics Interface for Application (ARIA) is a development environ-

ment that supplies procedures that handle most of the Pioneer tasks. It had procedures for en-

gaging/disengaging the robot, setting velocity and moving each of the two wheels forward or backward
1http://www.redhat.com/
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Figure 3.2: The equipment that was used for the recording of EEG. (a) EEG-cap, (b) Mindset. From

[61].
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Figure 3.3: The Pioneer 3-DX mobile robot.

and, more primitive, recon�gure individual bits in the digital input and output which can be used to

gain quick access to the Pioneer embedded computers, such as the gripper.

The primary motivation behind including the experiment in this project was to obtain familiarity

with the techniques and procedures associated with EEG recording. The reason for this is that one of

the goals of the project was to design a BCI system which would have a practical real-time application

if implemented. This means that EEG would be recorded from a person which would try to control the

mobile robot by focusing on a certain mental exercise. The experiment should thus be as similar to the

real-time situation as possible which is why it was decided to use the Pioneer robot in the experiment.

Apart from enhancing the credibility of the research, this approach also minimise the di�erence in the

EEG between the experiment situation and the end situation since visually related EEG count for up

to 60 percent of the EEG that is recordable from the scalp. [11]

Another motivation behind including the experiment in this project was to produce novel signals

which would be subject to analysis, �ltering, feature selection and classi�cation.

Three experiments were conducted in this project with two fellow students as test subjects, subjects
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S1 and S2, and one from outside the department, subject S3. There was a possibility of the subject

su�ering a minor injury during the setup, which is described shortly, so a voluntary consent form,

appendix B.1, was borrowed from Dr. Sepulveda and modi�ed to include the speci�cations of this

experiment. The subjects were all healthy males of ages 20 to 25.

3.1.1 Experiment setup

The experiments were conducted in the Brooker laboratory of the Essex University Department of

Computer Science. The laboratory is quite large considering the spatial requirements of the experiment

and other students would frequently be present. They all showed considerable consideration during

the experiments by constraining themselves from producing acoustic and visual disturbances. The

experiments proceeded therefore without interference and with the test subjects seeing only stationary

objects apart from the Pioneer robot which was moving.

Preparing for the experiment was a task that required concentration and experience. Dr. Sepul-

veda was therefor present during the setup which could last from three quarters of an hour to an hour

and a half depending on the impedance between the electrodes in the cap and the test subjects scalp.

A typical preparation would proceed as follows:

1. The subject was placed in a padded chair with adequate arm, leg and neck support to ensure
comfort. The subject could not see the Mindset, the PC or related equipment other than the
Pioneer robot. The experimenter was seated behind the subject where the experiment could be
conducted through a PC.

2. Two measurements were made on the subjects scalp:

(a) The scalp circumference which determines which cap would be best suited.
(b) The distance from the top of the nose bone (naison) to the tip of the aft most region of the

scalp (inion). This distance would be approximately 10 times the distance between the top
of the nose bone to the front of the cap.

3. The cap was �tted on the subjects scalp and ears cleaned and �tted with ear-reference electrodes.

4. A strap was placed around the subjects chest which the cap was attached to. This would ensure
that the cap would mostly stay in place.

5. The electrodes were O-shaped so that conductive gel could be injected in between each electrode
and the subjects scalp. The electrodes were �tted with a O-shaped sponge which con�ned the
gel to the area between the electrode and the scalp as well as providing comfort. The gel was
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Robot action Imagery movements
Turn right Imagine moving right arm and wrist
Turn left Imagine moving left arm and wrist

Move straight forward Imagine moving both legs by lifting up the heel
Move straight backward Imagine opening and closing the mouth

Table 3.1: The four directions of the Pioneer robot and their corresponding imagery movements.

injected with a �at-tipped needle which was also used to scrape dead skin of the scalp in order
to reduce impedance between the electrode and the scalp. This exercise could result in a minor
injury, hence the voluntary consent form, which the subjects were informed about prior to the
experiment.

6. Impedance was tested using the ground channel as a reference and the aim was to get it no higher
than 7 kΩ so the needle was used to improve conductivity when required.

7. Once the ear-reference and all 21 electrodes were tested for impedances then the setup was
complete as far as regards the subject.

8. The Pioneer robot was placed in front of the chair with its back facing towards the subject. The
distance between the subjects eyes and the robot was 150 cm. in all experiments.

The experiment protocol was explained to the subject during and after the setup. This was a

di�cult task because there are many things that the subject needed to consider with the least possible

e�ort. The protocol is described below but �rst a few words on the two mental exercises associated

with the experiment.

Mental exercise 1 included imagery movements of four distinct parts of the body that were asso-

ciated with each of the four actions of the Pioneer robot and are described in table 3.1. The reason

for choosing these body parts in particular was that they are all motor related and thus controlled by

the brains motor cortex, see section 2.1.2. Another bene�t is that the parts of the motor cortex, the

primary motor area to be exact, that control these body parts can be located on the scalp, �gure 2.3,

as well as having large areas of the primary motor area associated with them. A similar approach was

taken in [57].

Mental exercise 2 required the subject to visualise the potential being carried from the motor

cortex to the muscles in the body part that correspond to the robot's direction which are the same

37



3.1. EXPERIMENT PROCEDURE CHAPTER 3. METHODOLOGY

as in exercise 1. This approach will be referred to as signal imagery in the remainder of this paper

and is a �rst. This is di�erent than motor imagery in the sense that the average person may not have

any knowledge of the mechanisms that are at work when the brain transmits signals to the rest of

the body. It might be that the signal imagery gives better readings because of how close the brain

comes to actually performing the movements compared to motor imagery. It was decided to use two

di�erent exercises and then compare their relative success. Finding a candidate other than motor

imagery proved di�cult when dismissing all exercises that involve executed movements. The reason

for excluding these is that the techniques adopted here should also work for people which su�er from

total paralysis and do not have any voluntary control over their muscles. Only one alternative [50] to

motor imagery was found and that involved arithmetic operations which were not considered a very

intuitive way of controlling a mobile robot. Exercise 2 was therefore formulated and adopted in spite

of its lack of scienti�c credentials to provide an alternative to a well established technique.

Exercises that involve visualisation and imagination of activities are not guaranteed to be interpreted

in the same way between subjects. It was therefore made very clear that when, say, a right hand

imagery was required, then it would not be su�cient to simply repeat the words "move right arm"

to oneself but instead try to come as close to executing the action as possible without engaging any

muscles.

3.1.2 Experiment protocol

It was important to consider how to communicate to the subject what the next action of the robot

would be during the experiment. The reason for this is that it allowed the subject to begin a planning

process which may have produced informative EEG that could later approve classi�cation accuracy. It

was of great importance how these cues are produced as the discussion in section 2.2 indicates. It was

decided to use visual cues instead of acoustic ones which was based on the fact that acoustic information

takes longer to be processed by the brain than visual information. Four light-emitting diodes (LEDs)

that were positioned on the top of the robot were used as cues. The board was constructed by Mr.

Dowling which is a member of the technical sta� in the University of Essex. The LEDs were positioned

to the right and left, front and back, corresponding to the four directions that the robot could move
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t
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Figure 3.4: The time line for each trial of the experiment.

in. The cue would be that one of the LEDs would blink.

The protocol that was used in the experiment had two main parts which were the setup and the

actual experiment where timing and other factors were crucial. The latter part will now be described

in more detail as it was explained to the subjects.

1. All four LEDs blink twice indicating the beginning of the experiment.

2. EEG recording starts.

3. The following is performed 20 times (20 trials).

(a) Relax for 6s.
(b) A LED blinks indicating the start of the trial and the next action. Subject performs exercise.
(c) Continues the exercise for 3s.
(d) Pioneer robot moves.
(e) Continues the exercise and follows the robot for 3s.
(f) All four LEDs blink to signal that the subject can now relax and prepare for the next trial.

4. EEG recording stops.

Each iteration of the loop in the protocol constituted one trial. There were a total of 20 trials

in one sequence which there were two of, both containing �ve trials for each action but in di�erent

orders. These two alternated so that the subjects did not become preoccupied with trying to predict

the next action between trials. This was accomplished by producing a random sequence of 40 trials

containing 10 trials for each action and then dividing it while ensuring that a total of �ve trials per

action remaind in each part. Furthermore, each sequence ran four times for each exercises. This is

summarised in table 3.2 and �gure 3.4 shows the time line.

Table 3.2 shows the time requirements for each sequence of the experiment which adds up to 1920

seconds in total, or 32 minutes. This number is obtained by omitting the delays that were between
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Exercise Sequence # Trials # of Trials Seconds
Movement imagery 1 1 - 20 20 240

2 21 - 40 20 240
1 1 - 20 20 240
2 21 - 40 20 240

Intermediate 80 960
Signal imagery 1 1 - 20 20 240

2 21 - 40 20 240
1 1 - 20 20 240
2 21 - 40 20 240

Total 160 1920

Table 3.2: The division of trials between sequences as well as the duration of each sequence and the
whole experiment (omitting breaks).

sequences and any breaks that the subject requested. Adding this to the time required for the setup,

45 - 90 minutes, and the approximated total delay (and breaks) of 30 minutes between sequences, the

duration of the whole experiment procedure was expected to be between 107 and 152 minutes which

proved reasonably accurate.

3.1.3 EEG recording

Section 3.1 described the SCSI board and the SCSI library which needs to be included in applications

which make use of the Mindset functionality. The SCSI library was obtained from the producer and

later modi�ed by L. Citi to enhance its generality.

Earlier experiments by Dr. Sepulveda required an application which could display four commands

on a screen, one at a time, in a predetermined sequence. The code for this application was used in

this project and modi�ed with permission. The code (appendix C.1) was modi�ed to implement an

algorithm which would conduct each sequence of the experiment. It was modi�ed to follow the logical

structure of the experiment protocol with a few exceptions and additions. An outline of the algorithm

is given below as it was written in C++.

blinkAll();
blinkAll();
Acq.SCSI_StartSampling();
int i=0;
int count=0;
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bn = 0;
Sleep(6000);
for(i=0; i<20; i++) {

Cue();
... The below is done three times ...
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);....................................
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
robot -> setVel(leftvel, rightvel);
cprintf("%6s",seq[count]);
... The below is done three times ...
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);....................................
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
BlinkAll();
count++;
Sleep(6000);

}

The procedures blinkAll() and setVel(leftvel,rightvel) turned all four LEDs on for one

second and set the Pioneer robots velocity, respectively. They will be described in more detail in

section 3.1.4. Acq was an instance of the SCSI class which called the SCSI libraries and provided an

interface to the Mindset. The Cue() procedure turned one LED on for one second corresponding to

the direction the robot would move. The direction was also printed on the screen for the experimenter

to follow. The Sleep(x) procedures maked the process sleep for x milliseconds. The most interesting

addition was the data that were stored in the samplmark array. The data were numbers that indicated

which sample was being recorded from the Mindset when the SCSI_GetCurrentSampleNum() procedure

was called. This happened eight times in each trial and is described in more detail in section 3.2. These

markers were used in the preprocessing to extract only meaningful data from the whole sequence which,

in practice, also recorded EEG while the subject relaxed. These markers were also useful when the

EEG was extracted from, say, the �rst second of each trial. This will be described in more detail in

section 3.2.
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Procedure name Arguments Description
run (true | false) Initialises the robot.
setVel2 (left wheel velocity, right

wheel velocity)
Sets the velocity of each wheel individually as
speci�ed by the arguments.

com2Bytes (Command name, lower bit,
higher bit)

A low-level procedure which was used to im-
plement high-level functionality such as set-
ting the velocity. It allowed the user to set in-
dividual bits in the digital input/output ports
according to the lower and higher bit argu-
ments.

blinkAll () Sets the bits in the digital input/output ports
that tured the LEDs on and o�.

Table 3.3: A description of relevant ARIA procedures.

3.1.4 Robot control

The ARIA library, section 3.1, provided procedures that controlled the Pioneer robot. An instance

of the ArRobot class had to be created which would make all of the robot's functionality available.

Once the robot was initialised it could be controlled directly by calling the ARIA procedures which

are described below.

One of the Pioneer robot's accessory was a gripper arm which was disconnect and the ports that

would otherwise control the gripper arm were assigned to the LED board. There were some prob-

lems encountered while determining the bit masks speci�cations so the ports that were used in the

application were found through trial and error.

The robot was connect to the PC through a serial connection which had the advantage of engaging

only the robot microprocessor. The robot could then respond to commands as quickly as possible. An

alternative would have been to use a wireless network connection which would have been somewhat

slower and since the timing is a crucial factor in an experiment of this kind, a serial connection was

used.
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3.2 Signal preprocessing

Large amount of signals were recorded during the experiment like the previous section indicates. The

signals were stored in binary �les which were converted to an array representation with a script (ap-

pendix C.2) that was created at Essex University. Those �les were structured as a 24 row array which

corresponded to the 24 electrodes that can be connected to the Mindset although only 21 of them were

used which is the number of electrodes on the cap.

There were a few issues that needed to be addressed in order to structure the signals in a way that

would make it more intuitive to use in the feature extraction algorithms. These are . . .

• Each experiment produced 16 binary �les that contained the EEG recordings. They were named
according to the type of exercise and sequence number and contained equal numbers of trials for
each of the four actions. This requires a method of grouping signals together that belonged to
the same action.

• The �les also contained signals that were recorded during relaxation and would not be used
further, so these segments needed to be discarded.

• A separate �le contained the markers which had to be included in the data for feature extraction,
e.g., when extracting a one second segment out of the six second trial data.

A simple algorithm was implemented in MATLAB [39] (appendix C.3) which extracted the signals

from the binary �les and stored it in arrays until all the signals that corresponded to, say, a right hand

movement imagery over four sequences was gathered. After which, the array was stored in a �le that

contained only signals for one type of action. This was done separately for each exercise.

The markers were stored in separate �les and used by the algorithm in parallel with the signal

arrays. To eliminate any signals recorded while the subject relaxed the algorithm simply counted the

number of markers and deleted all signals after it counted eight markers and until the next marker was

encountered, then it counted another eight etc. The algorithm added one row to the new signal arrays

which then had a total of 25 rows and each time the algorithm encountered a column that corresponded

to a marker it added a 1 in this additional row. When the algorithm completed it had put a 1 in the

25th row whenever the column corresponded to a marker, and a 0 otherwise. Upon completion, the
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Left signals

Right signals

. . .

Marker array

Signal array

RelevantIrrelevant

(a) (a)

(b)

(b)

(c)

(c)

Figure 3.5: The �gure shows how signals were sorted after the experiment. The process includes (a)

locating relevant signals using markers, (b) grouping relevant signals together, and (c) adding the

markers to the array.

algorithm had successfully partitioned the signals into �les containing EEG recordings for each action

and each exercise as well as including the markers directly in the new arrays, in row 25.

The operations of the algorithm are depicted in �gure 3.5.

3.2.1 Filtering

The Butterworth �lter was used to bandpass �lter the signals, section 2.3. The actual passband was

considered a feature and will thus be described in section 3.3. The reason for this choice was that the

Butterworth �lter has a minimal loss of information because of a smoother frequency response in the

passband than, say, a Chebyshev �lter, see �gure 2.4. This property of the Butterworth �lter made it

a very attractive choice since EEG in general contain much noise to begin with so reducing it further

requires a reason that builds on extensive experimentation where the lost information is shown to be

non-descriptive.

The �lter was created with MATLAB's butter function which belongs to the signal processing

toolbox. Two arguments were supplied to the function which were the �lter order and low/high-pass
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frequencies. The �lter order n argument should only be a fourth of the desired �lter order for the

following reasons. Firstly, because the �lter performed bandpass �ltering it would, in e�ect, make two

passes over the signal, one for highpass and one for lowpass resulting in �ltering of order 2n. This had

the same e�ect as applying two �lters, low and high pass, of order n each. Secondly, the MATLAB

function filtfilt was used to apply the �lter on the signal. This made the �lter pass over the signal

twice, once in each direction. The reason for this choice was that the �rst pass, which could be invoked

with the function filter, shifted the signal slightly in the direction of the �ltering which might have

resulted in some information loss. The filtfilt function minimised this e�ect by making another

pass over the signal in the reverse direction, thus shifting the signal back to its original position. The

resulting �lter would thus be a zero-phase [30] �lter of order 4n.

The second argument that was supplied to the butter function was the normalised range of the

passband. The sampling frequency was 256 so the passband range was normalised between 0 and 128,

where 128 is the Nyquist frequency, i.e., half of the sampling frequency. [60].

3.3 Feature selection

The importance of using a feature selection criteria was brie�y discussed in section 2.4 (page 23). The

main reason for this is that the feature space was huge and exhaustive search would be very impractical

in most situations. The criteria that was used here is the Davies-Bouldin index (DBI) which measured

class overlap and hence how easy it would be to classify the signals with a linear classi�er. The signals,

however, were expected to be non-linear which would give a high DBI even when easily separable by a

non-linear classi�er. A consequence of this was that the signals were subject to non-linear transform

using a radial basis function, MATLAB's radbas, after which the DBI was calculated. The signals,

when cast into higher-dimensional space, would then be more likely to have a lower DBI than before the

transform, perhaps even low enough to be linearly separable. [15] Furthermore, the DBI was readily

calculated and thus a good choice due to project timing constraints.

The DBI and the post transform DBI were calculated for the features which are summarised in
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Exercise Movement imagery, signal imagery
Filter orders (4 ∗ n) n = {1, 2, 3, 4, 5}
Spatial: channels 1,. . . ,21
Time: single windows (seconds) Whole trial (6s), 0− 0.5, 0− 1, 1− 2, 2− 3, 3− 4, 4− 5,

5− 6
Time: raw signal Mean, variance, std., maximum and minimum
Frequency: bands (Hz) 0.5− 45, 0.5− 3.5(δ), 3.5− 8(θ), 8− 13(α), 13− 22(β)

and 22− 40(γ)
Frequency: power spectral density Mean, variance, std., maximum and minimum

Table 3.4: This table gives a summary of the features that the DBI was calculated for. Those features
that were associated with the lowest DBI for each category would then be selected and used for
classi�cation.

table 3.4.

Features were eliminated sequentially so an initial con�guration was established which was used

in all but the last DBI calculations or until the features that had the lowest DBI were found. This

con�guration was a follows:

• All 21 channels.

• Time window 0− 6, a whole trial.

• Raw signal mean.

• Filter order 3, 12 after four passes.

At �rst the exercises were subject to evaluation using the initial con�guration for both movement

imagery and signal imagery. The one that gave the lowest DBI on any channel would then be used in

further evaluations. This process continued until the features that had the lowest DBI were found. It

was not believed to be problematic to conduct the evaluations in this way because all three networks had

neurons whose number surpassed the number of features. A neuron e�ectively adds a new dimension

to the space where a decision hyperplane would be drawn. A property of DBI is that adding many

zero-DBI features, i.e., they form clusters which are separable by a straight line, together would result

in a collection of clusters that could be separated by a straight line in each dimension.
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3.3.1 Feature extraction

Once the features were selected, they needed to be extracted - sometimes calculated - in an e�ective

way. Some of these methods were trivial such as extracting signals from a speci�c channel which was

simply a row vector in the signal array and the signals for a speci�c exercise were simply loaded into

the array that was used throughout the program. The �lter order was simply increased with a counter

variable. A function was created that called the MATLAB functions that implemented the �lter . . .

• bandpass(Input, filter order, lowpass frequency, highpass frequency, channel range),
see appendix C.4.

To extract a speci�c frequency band, the α band for example, one only needed to supply 8 and 13

as low- and highpass frequencies.

The mean, variance, standard deviation, maximum and minimum were also trivial to calculate in

MATLAB with their respective functions mean, var, std, max and min.

Extracting a signal contained in a speci�c time window required that an algorithm was devised

which could used the markers in the 25th row of the array to determine which segment to extract.

This algorithm was implemented in the function extractsegment . . .

• extractsegment(Input, start column, window number), see appendix C.5.

Window number 1 would be between the �rst and second markers and contain one second of EEG

recordings.

Calculating the PSD of the signal was made very easy by MATLABs pwelch function which ac-

cepted a row vector as argument and returned the power spectral density of its input. The average

power of the signal was calculated with dspdata.psd, another MATLAB function, which accepted a

vector containing the PSD estimation data. This made it all very intuitive to use and a function was

created that did this automatically when given a row vector . . .

• psd(Input), see appendix C.6.

The energy was calculated using equation 2.4, page 22, when given a row vector . . .

• calculateenergy(Input), see appendix C.7.
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3.4 Pattern classi�cation

The classi�ers described in section 2.5 were all used in this project and their implementation and

speci�cations are described below, but �rstly, the reasons for choosing these classi�ers are as follows

. . .

1. The perceptron is a linear classi�er which has been shown to produce good results when used in
a BCI system, e.g., [4] and [74].

2. A linear classi�er such as the perceptron would be a very valuable commodity in a real-time
implementation of this system if used for a wheelchair controller where the time it would take
the system to response to the users intentions is directly related to her safety.

3. The RBF network does not share the linear classi�ers popularity in BCI research but it provided
an insight into how applicable it would be to only perform non-linear transformation of the signals
which is a relatively simple calculation. The same argument of user safety applies here.

4. The LVQ network is perhaps the most widely adopted classi�er in BCI research, e.g., [55], [54]
and [59].

5. The LVQ network performs clustering on the signals and thus well suited to �nd salient features
in the signals that a human inspector might not notice.

The performance measures common to them all was the average classi�cation accuracy and the

average mean square error (MSE).

3.4.1 Perceptron

A perceptron was created in MATLAB with the function newff2. This function accepted parameters

that de�ned some of the structural and learning parameters. These were, �rstly, the minimum and

maximum values of the input which was calculated using MATLABs minmax function. Secondly, the

number of neurons, which is described below. The third and fourth arguments were the activation

function and the learning function, respectively, both of which are described below. Other related

aspects were considered as well and a brief description of each of them is given as well.
2Alternatively, newp could have be used but fewer network parameters could then be speci�ed.
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The Number of neurons was determined manually by comparing the performance of networks with

di�erent numbers of neurons. The optimal number of neurons, found to be 15 in this case, depended

on the complexity of the function to be approximated. To many neurons may have led to over�tting,

see section 2.5, and to few may have caused under�tting - insu�cient learning.

The activation function that was used is a linear transfer function calculated with the MATLAB

function purelin. More sophisticated activation functions were available but these are used in MLP

networks and not applicable in a linear separation unit such as the perceptron.

The learning function that was used is learngd which is a gradient descent weight and bias

learning function. A number of learning functions were available in MATLAB and alternatives include

traingd and traingdm which are both gradient descent with backpropagation learning functions with

and without a momentum [41] term. These are, however, for use with multilayer networks.

The learning rate was, unfortunately, not subject to extensive testing but set as MATLABs default

value of 0.05.

Early stopping was used during training to prevent over�tting, see section 2.5. Over�tting pre-

vention procedures are not implemented in MATLAB by default so this had to be done explicitly by

splitting the training set into two subsets and instruct MATLAB to perform cross-validation, section

2.5, page 29.

The training epochs were set to be 300 although cross-validation would sometimes suspend training

after fewer epochs.

Regularisation is another technique for preventing over�tting and involved changing the perfor-

mance function used by the network which would be the sum of squares error that the network pro-

duces on the training data set. The performance function was modi�ed to include the mean of the

sum of squares of the network weights and bias which resulted in smaller weights and bias and thus
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forcing the network response to be smoother. [30] This was done manually in MATLAB by setting

performFcn to be msereg. This can be seen in the code example below.

Code example
net = newff(minmax(Train),[15],{'purelin'},'traingd'};
net.trainParam.lr = 0.05;
net.trainParam.epochs = 00;
net.performFcn = 'msereg';
net.trainParam.goal = 0.001;
net = init(net);
net = train(net, Train, Target, [], [], Val);
Y = sim(net, Test);
error = mse(TestTarget - Y);

Training consisted of three individual runs where a new network was created and tested, each with

a di�erent portion of the signals. Then the average accuracy and error was calculated.

The training, validation and testing signals were stored in the arrays Train, Val.P and Test

respectively, containing a third of the whole collection each. The Train array was associated with a

target class array Target which contained the desired output. The Test array was also associated

with a target class array TestTarget which was used to measure the performance of the network.

MATLAB required that the validation signals be stored in a structure, hence the Val.P where Val is

the structure and P is the actual array. Furthermore, it was also required that the structure contained

a target class array which was Val.T.

The size of the arrays depended on the number of features, F1, F2, ..., FN , and was implemented as

the transpose of the row vector containing these, i.e., [F1, F2, ..., FN ]T . The targets were designed as

column vectors containing one number for each class and set to 1 if the corresponding output neuron

should learn to predict that class, −1 otherwise. Consider two output neurons learning to predict a

class each, then the target could be [1,−1]T for one class and [−1, 1]T for the other.

The performance was measured by calculating the mean square error between the predicted output

and desired output. This was done with MATLAB's mse which argument is an array containing the

desired output subtracted from the predicted output, z − y.
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3.4.2 Radial basis function network

A RBF network was created in MATLAB with the newrb function. The arguments supplied to this

function were the training and target arrays, an error goal and the spread of the RB functions. The

training procedure of the MATLAB RBF network was di�erent from that of, say, a perceptron, as the

RBF network is not trained explicitly. This is described below in more detail.

The activation functions in the RBF network are radbas in the RB layer and purelin in the

linear layer. The radbas function takes as input an array of column vectors and outputs each element

after it has been passed through a radial basis function which casts the input into higher-dimensional

space. The purelin function is the same as is used in the perceptron.

Code example
net = newrb(Train, Target);
Y = sim(net, Test);
error = mse(TestTarget - Y);

Training happened right after the network creation without requiring any explicit initialisation by

the user. The network started with only two neurons, one in the radial basis layer (RB neuron) and

one in the linear layer. The network was then trained by updating the following parameters:

• RB neurons were added to the RB layer through an incremental process where each new neuron
was created with weights equal to the input vector that had the greatest error, i.e., the input
vector that the network had the most di�culty classifying.

• RB function centres and spreads could have been learned using either backpropagation or clus-
tering as was described in section 2.5, page 26. MATLAB used the backpropagation algorithm
by default which was left unchanged.

• Network weights in both layers were learned using backpropagation.

The training would proceed in a somewhat di�erent manner from the one used for the perceptron

because MATLAB does not give the user many options when creating a RBF network which, unfor-

tunately, led to a situation where early stopping could not be implemented for the RBF network. To
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compensate for this, and to ensure the validity of later comparisons of the networks, another recognised

technique was used when training the RBF network.

The technique involved dividing the signals into two subsets which were used for training and

testing, containing 4/5th parts and 1/5th part of the signals respectively. This was done 5 times in

total and the testing signals were drawn from a di�erent 1/5th part each time. This approach resembles

10-fold cross-validation, cross-validation performed 10 times with a di�erent partitioning each time,

but not quite as elegant which is due to timing constraints and only done 5 times because of the limited

number of signals.

The training and target arrays for this network had the same structure as the ones used to train

the perceptron except there was no need for the Val structure.

3.4.3 Learning vector quantisation network

A LVQ network was created in MATLAB in a similar way as the perceptron, i.e., more parameters

could be speci�ed prior to training. The network was created with the function newlvq which takes as

arguments an array of minimum and maximum values for each row in the input, a number of neurons

in the competitive layer and a vector of the typical class percentage. The learning rate and learning

function could also be speci�ed and they will be described shortly.

The neurons in the competitive layer need to be at least as many as the target classes. [28]

The reason for this is that the predictions made by the linear layer depend on which neurons in

the competitive layer �re. Having more neurons than classes in the competitive layer increased the

generality of the network and thus reduced the risk of the network over�tting the data. The linear

layer had a neuron for each target class, each of which was associated with all of the competitive layer

neurons.

The activation functions that were used to determine the output from each layer were compet in

the competitive layer and purelin in the linear layer. The compet function accepted one input which
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is an array of column vectors and returned a vector for each of those with 1 where the vector had

its maximum value and 0 in the other places. An example of this is the input vector [1, 2, 4, 3] which

would result in the output vector [0, 0, 1, 0] if passed through the compet function. The purelin is the

same as in the two other networks.

The learning function was, by default in MATLAB, learnlv1 which propagated the error back

to the competitive layer once the predicted class had been compared to the desired target class. In a

LVQ network, the competitive layer weights were considered to be arrays rather than numbers and the

learning involved shifting the content of the array to match the output of the linear layer. Consider

an example of the learning function operation where neuron i in the competitive layer was the only

one that �red, then the ith row of the competitive layer weight array would have a one in it, all others

would have zero. This row would then be shifted towards the input vector if the prediction turned out

to be correct, shifted away from it otherwise. This implemented a pretty straightforward concept of

grouping competitive neurons together that predicted similar classes.

An alternative to learnlv1 was the learnlv2 learning function which also considered runners

up in the competitions and allowed the user to specify weight gradients and neuron distances. This

functionality was not required to implement a working LVQ network so the network was implemented

with learnlv1.

Class percentage was simply a vector describing the percentages of training examples that belonged

to each class. In this case where two classes were used, the vector was [0.5, 0.5].

The learning rate was not subject to much experimentation. The default value was 0.01 and was

not changed.

The training epochs were 100 which was established by trying di�erent values and comparing the

performance of the networks.
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Filter DBI Features
Extract Classify

EEG Robot

Figure 3.6: An outline of the design.

Code example
net = newlvq(minmax(Train), 18, [0.5 0.5]);
net = trainParam.epochs = 300;
net = trainParam.goal = 0.001;
vTarget = ind2vec(Target);
net = train(net, Train, Target);
vY = sim(net, Test);
Y = vec2ind(vY);
error = mse(TestTarget - Y);

Training of the LVQ network was similar to the one in the RBF network, i.e., a primitive imple-

mentation of the 10-fold cross-validation technique.

The training signals had the same structure as in the other networks but the targets were changed

to contain a row vector of indices where each distinct index encoded a class. The functions ind2vec

and vec2ind are a convenient way of representing indices as vectors and vectors as indices, respectively.

3.5 Towards the design

Most of the code presented here was written in MATLAB while the application that controls the

Pioneer robot was written in C++. These would have to be combined if implemented as a real-time

system which would have been readily done by using MATLAB's mcc compiler which could compile all

of the code written for this project into either C++ source code or a dynamic link library (dll), both

of which could be included in the C++ project and thus making the MATLAB functions available in

the same application as the Pioneer robot controller.
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An outline of the design is given in �gure 3.6 where each of the parts of the BCI system are shown.

The speci�cations of each part was the above description of the techniques that were used and the

features the were selected.
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Chapter 4

Results

This chapter describes the results of the applied techniques described in chapter 3. The results are

accompanied by notes on their interpretation.

4.1 Experiment procedure

The experiments ran without any major complications. EEG were recorded and markers were posi-

tioned in the right places.

The subjects reported that they started loosing concentration after about an hour and a half which

may have a�ected the quality of the EEG. If it were not for timing constraints, a reasonable solution

might have been to divide the exercise into two parts or have longer, predetermined breaks. The test

subjects also exhibited willingness to continue in spite of their lack of concentration in order to be

�nished earlier. In spite of their motivation and greatly appreciated e�ort, one can not expect people

to have total control over their concentration, especially when tired and sitting in a comfortable chair

in a quiet room for a period of time as long as was the case. This is the primary indicator that more

and shorter experiments would have been in order.

The result of the experiments was a collection of EEG recordings for subject S1, S2 and S3. All

these were di�erent as can be seen in �gure 4.1 but note that visual inspection is not reliable since it

gives little indication of the statistical relationships between them. The signals from subject S3 were
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Figure 4.1: Mesh diagram of the recorded EEG for all subjects.

considerably noisy which may have been caused by muscle activity, hence the high amplitudes. Spikes

of high amplitudes are otherwise mostly related to eye blinking and neck movements.

4.2 Signal preprocessing

The most time consuming parts of the application where the partitioning and �ltering. This was

not surprising considering the amount of work that was performed by these parts. The partitioning

algorithm included a number of for loops, see appendix C.3, so the performance bottleneck was the

PC's processor. All signals were stored in the PC's primary memory so the algorithm operations could

acquire them quickly. The same was true for the �lter whose speed depended mostly on the PC's

processor. This was not expected to be a problem in a real-time situation since the number of signals

would be considerably less and thus more rapidly preprocessed.
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Domain Feature DBI DBI(RB)
Exercise Movement 4.04 7.99

Signal 3.60 4.00
Spatial Channel Fp1 3.60 12.43

Channel Fp2 4.70 16.65
Channel F7 11.75 4.69
Channel F3 4.96 4.78
Channel Fz 4.68 12.03
Channel F4 4.37 7.06
Channel F8 8.00 52.96
Channel T3 9.97 527.62
Channel C3 7.38 5.45
Channel Cz 8.53 4.355
Channel C4 12.89 7.75
Channel T4 9.38 83.05
Channel T5 41.28 6.04
Channel P3 38.36 4.00
Channel Pz 42.03 4.59
Channel P4 64.67 6.75
Channel T6 25.85 11.52
Channel O1 47.92 5.70
Channel O2 225.81 5.71
Channel Fpz 4.07 8.41
Channel Oz 107.14 4.39

Table 4.1: The DBI on which feature selection was based. (Continued in table 4.2)

4.3 Feature selection

The DBI were calculated for the features that were selected in section 3.3 and are summarised in tables

4.1 and 4.2. Accompanying the DBI for the features is the DBI which were calculated after the signals

were transformed with a radial basis function, this is column DBI(RB) in the tables.

A summary of the features that were selected is given below. These features were used to train

and test the classi�ers.

• Signal imagery.

• Channels Fp1, Fpz, Fp2, F3, Fz and F4.

• Window 0− 1.
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Domain Feature DBI DBI(RB)
Time Window 0− 6 3.60 7.06

Window 0− 0.5 4.10 8.54
Window 0− 1 3.35 9.85
Window 1− 2 14.82 12.75
Window 2− 3 14.14 9.61
Window 3− 4 15.79 6.03
Window 4− 5 8.17 13.22
Window 5− 6 5.53 7.50
Raw signal mean 3.35 9.85
Raw signal var. 8.62 6.24
Raw signal std. 11.24 4.46
Raw signal max 22.88 5.13
Raw signal min 5.50 5.57

Frequency PSD mean 9.23 5.96
PSD var. 7.28 NaN
PSD std. 7.45 6.24
PSD max 5.18 NaN
PSD min 6.05 5.95
Band 0.5− 45 3.35 9.85
Band 0.5− 3.5 3.52 8.48
Band 3.5− 8 5.86 7.12
Band 8− 13 15.90 6.00
Band 13− 22 7.83 6.59
Band 22− 40 14.75 14.53

Filter Order 1 4.09 3.48
Order 2 3.81 4.29
Order 3 3.35 9.85
Order 4 2.95 10.85
Order 5 3.45 1.09

Table 4.2: The DBI on which feature selection was based. (Continued from table 4.1)
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• Mean of raw signal.

• Maximum of the power spectral density.

The non-linear transform of the PSD maximum value caused the DBI algorithm to try dividing

with zero which maked MATLAB return a measure that indicates that the result was not a number

(NaN).

Interpretation of results

Only signals that corresponded to the Pioneer robot turning right and left were used to obtain the

results described here. The primary reason for this was that the results that were obtained here were

compared to the results obtained by other researchers that only considered two actions.

It can be seen in table 4.1 that the signal imagery exercise gave a lower DBI than motor imagery.

This was very surprising since movement imagery is widely adopted in similar research such as [10]

and [55].

Another observation was that the channels that gave the lowest DBI were all con�ned to the brains

frontal lobe, see �gure 3.1, page 32. This might have been due to the fact that during the experiment

the subjects were asked to maintain a mental activity for six seconds which was di�cult to do with

the same intensity as in the �rst, say, second. It is therefore possible that this e�ort produced more

activity in the frontal lobe which is also referred to as the motor associative cortex [8] and is responsible

for planning and executing movements. The planning was perhaps a bigger factor here than expected

which might explain these results.

The time window that gave the lowest DBI was the 0 − 1 window which was expected to have

higher DBI than the 0 − 0.5 window which, in theory, should contain descriptive EEG components

since the burst of RPs was contained within that window, see section 2.4.2. A possible reason for this

is that although the RP was present in the �rst 500 milliseconds, it might have been a response to the

cue regardless of the action it indicates. A cue might then have caused a reaction in the brain which

was similar for all four cues for the �rst few hundred milliseconds and not until the subjects associated
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Figure 4.2: A �gure of the class overlap between the selected features for right and left.

the cue with an action the RPs became di�erent, which might have taken more than 500 milliseconds.

The mean that was taken over the raw EEG had the least class overlap according to table 4.2.

In section 2.4, page 16, it was mentioned that due to the stochastic nature of EEG it is di�cult to

�nd a correlation between the shape of the EEG and a speci�c target. There might, however, have be

some measurable correlation between the amplitudes of the EEG and their corresponding target which

would make the mean amplitude a descriptive feature.

The DBI for the PSD features were quite similar which might be traceable to the fact that the

PSD was distributed over all frequencies that were contained in the signal and a measure such as the

mean taken over the whole frequency range may have been a very descriptive feature.

Tables 4.1 and 4.2 also show the there was more class overlap in the non-linearly transformed

signals than the original signals, at least for the selected features. This was surprising since non-

linearly separable data is more likely to be linearly separable when cast into a higher-dimensional

space [15].

The class overlap between right and left hand signal imagery is illustrated in �gure 4.2. It is clear

that a straight line could not separate these.
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4.4 Pattern classi�cation

The results described in this section were obtained by applying the classi�cation techniques described

in sections 2.5 and 3.4. Confusion matrices of the predictions of each classi�er are given as well as

their average classi�cation accuracy and their average mean square error. The results were obtained

by the MATLAB code in perceptron.m, rbf.m and lvq.m which are given in appendix C.8 to C.10.

The perceptron was initialised with new random weights in each of the three runs using MATLAB's

rands function. The weights could also be initialised to zero, which is MATLAB's default setting for

a perceptron created using newp. This was done by including net.initParam = 0 in the code and

resulted in similar performance.

The training was usually suspended after 80 - 100 epochs when the training error and validation

error began to deviate. Training continued for all 500 epochs otherwise.

A new RBF network was created in each of the 10 runs and trained and tested with di�erent parts of

the data each time. The average number of neurons that were created was around 50.

A new LVQ network was also created 10 times like the RBF network.

The perceptron had peak performance of 79% accuracy and 0.8501 mean square error. The RBF

had peak performance of 75% accuracy (100% for right signal imagery) and 1.7950 mean square error

while the LVQ network had peak performance of 46% accuracy and 0.3571 mean square error.

Interpretation of results

The perceptron exhibited considerably higher classi�cation accuracy than the other two which was

surprising since it was the simplest of the three. It is most likely due to the systematic process of

choosing features that had the lowest DBI.

Referring back to tables 4.1 and 4.2, one can see that the selected features had a considerably
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Perceptron

Actual

Predicted
Right Left

Right 77.78% 44.45%
Left 22.22% 55.56%

Average Average
classi�cation mean square
accuracy error
70.2778% 1.0478

RBF network

Actual

Predicted
Right Left

Right 42.50% 50.00%
Left 57.50% 50.00%

Average Average
classi�cation mean square
accuracy error
46.25% 2.2455

LVQ network

Actual

Predicted
Right Left

Right 54.29% 72.86%
Left 45.71% 27.14%

Average Average
classi�cation mean square
accuracy error
40.71% 0.4143

Table 4.3: The performance of the perceptron, RBF and LVQ networks measured as the average
classi�cation accuracy and average mean square error.

high DBI when calculated post non-linear transform. This observation was an indicator that the RBF

network would not perform well when used to classify the signals since it uses the same function as

was used in the DBI calculations - MATLAB's radbas - to transform its inputs. Afterwards, the RBF

network performed linear separation of the outputs from the RB layer which would not be readily done

according the DBI.

A similar argument holds for the LVQ network which performed clustering on its inputs and keeping

in mind that the DBI is in essence a cluster overlap measure one can see that the LVQ networks su�ers

a similar fate as the RBF network when choosing features based on DBI or a similar measures.

The perceptron and RBF network produced a similar number of false-positives for right and left,

i.e., predicting right when the actual action is left, which is more convenient than than the large

di�erence produced by the LVQ network. The reason for this is that a system implemented with the

LVQ classi�ers would have a great tendency to make the robot turn left when the user was trying

to make it turn right. If implemented with the perceptron or RBF network, however, it would have

almost equal tendency towards both directions.
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Discussion

This chapter contains a discussion of the pros and cons of the adopted methodology and its application

as well as the results.

5.1 Experiment procedure

The Brooker laboratory was a well suited location because of its size which imposed no constraints on

the roaming of the Pioneer robot, although the robots movements were programmed to be con�ned

within a 75 centimeter radius. Each of the three experiments proceeded without any major compli-

cations and the feedback from the test subjects was mostly positive. There was one aspect, at least,

of the experiment protocol which could have been improved to ensure the alertness of the subjects

and thus the quality of the EEG. This aspect was the duration of the experiments which were usually

between 120 and 180 minutes, a period long enough for people to start loosing their concentration,

especially when comfortably seated. The timing constraints on the project and the amount of time

required for the setup, did not allow for this improvement.

Another aspect which might be considered was the presence of other students in the laboratory.

Although not intended, their activities created disturbances for the subjects, particularly in the latter

parts of the experiments.

A possible complication when applying the design described in section 3.5 to solve a practical
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problem such as EEG-driven wheelchair control, is that, during the experiment, the subject and the

Pioneer robot live in two di�erent coordinate systems. This, however, depends on the e�ect that

visually related EEG have on the classi�cation of the selected features. A measure for this e�ect might

be obtained by conducting a fourth experiment with one of the test subjects and ask them to keep

their eyes closed and use a touch or acoustic cues instead.

Exercise one of the experiment was motivated by the use of similar methods conducted by expe-

rienced researchers in this �eld, most notably G. Pfurtscheller et al. [57]. The exercise described in

that paper were similar to the one used here except it only considers right and left motor imagery and

uses acoustic cues as well as visual. They also extended their initial experimental paradigm to include

testing sessions where the user would get feedback from the system communicating the results of the

classi�cation. It is generally thought that the control of EEG is learnable [16] which may be what they

intended. Feedback is also used in [55] and could have been adopted here if given more time.

Exercise two was somewhat motivated by the fact that it is a novel approach and an interesting

comparison would be to hold an established technique, such as motor imagery, up against something

that had little scienti�c support. The speci�cs of this exercise were not encountered elsewhere and the

only encounter with an alternative to motor imagery was described in [50] which involved arithmetic

operations and is the only publication of an alternative exercise according to [16]. This indicates that

choosing from existing alternatives was not a reasonable option since arithmetic operations are not

intuitively associated with robot control.

The results in table 4.1, page 59, indicated that the signal imagery would be easier to separate

with a linear classi�er than the RBF and LVQ networks which is surprising considering the de�nition

of the DBI.

The arguments for the usefulness of this exercise are, however, not built on any scienti�c founda-

tion since there was no investigation into the physiological aspects of this exercise and thus, di�cult

to defend.
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Considerable time was saved during the implementation of the experiment software since libraries

were available for both the SCSI board and the Pioneer robot (ARIA) as well as existing code that

implemented a similar experiment.

Timing was a crucial factor in experiments such as these because the EEG that was recorded had to

be marked at di�erent places so that relevant signals could be readily extracted and irrelevant signals,

recorded whilst the subjects relaxed, could be discarded. Visual inspection indicated that the markers

were properly distributed but further investigation would be in order to con�rm this.

5.2 Signal preprocessing

After the experiment and when the signals had been gathered, they were partitioned so that EEG

related to, say, right signal imagery, was all stored in the same �le. This made it very easy to work

with henceforth. The markers were simply added to the �les by including them in an additional row

which was not a very elegant solution. A better solution would have been to create separate marker

�les for each data �le during partitioning.

The signals were then �ltered with a Butterworth �lter which was chosen because of the maximal

smoothness of the frequency response, as was described in section 2.3, page 14. The Chebyshev �lter

was also considered and did not share the �at frequency response of the Butterworth although it has

a steeper decline in the stopband for low orders. This di�erence was not subject to extensive testing,

rather it was assumed that the Butterworth would preserve more of the signal over all frequencies

while the Chebyshev would preserve more in the vicinity of the stopband. An experiment that would

establish which was better in this case would certainly be interesting.

5.3 Feature selection

The feature selection was conducted in a scienti�c way and all features that were used have an associated

index which indicates how well a linear classi�er could separate them. There are some considerations

regarding the applicability of DBI in BCI systems such as the non-linear nature of EEG which is
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very unlikely to be linearly separable unless more advanced feature selection methods are used such

as the bispectrum of EEG [74]. This indicates that the DBI could be a useful measure when used on

statistical properties of the EEG that are obtained with sophisticated techniques. The sophistication

of the features that could be considered here was constrained by the amount of time that was available

as well as the considerable e�ort that was used on background research.

In table 4.2, page 60, it can be seen that the frequency band that gave the lowest DBI was the

0.5 - 45Hz broad band. This might be directly traceable to the order of the �lter that was used, 3

(12 in e�ect), since this band contained considerably more frequencies than the others. The e�ect

of the �ltering would thus be less in this band than the others and it might have caused more loss

of information in the narrower bands which would explain why their DBI was relatively high. There

might be other reasons as well but this was very peculiar since much of the related research focuses on

the α and β bands with similar �lter order, e.g., [4], although precedence exists for using broad bands

with with good results [57].

The electrodes corresponding to channels Fp1, Fpz, Fp2, F3, Fz and F4 were all located on top

of the frontal lobe which was a very interesting discovery. This might be related to the nature of the

exercise which involved signal imagery that might be more related to planning than the execution of

movements. It would be interesting to explore how the features would change if motor imagery were

used instead. The channels would then be expected to be con�ned to the motor cortex region (channels

C3, Cz and C4) which have been used as features in, among others, [74].

The �rst second of each trial had the lowest DBI and was therefore used as a feature. This is

probably directly related to the conscious reaction of the subject to the cue, after which the subject

tries to maintain the state which might not have produced as descriptive EEG. It was a surprise that

the �rst 500 milliseconds did not contain more descriptive EEG because of the strong RP which is

produce during that time after the cue. This window has been used in related work such as [58]. There

might even be a slight chance that this was due to inaccurate placement of the markers, a speculation

which could not be dismissed without thorough testing.
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5.4 Pattern classi�cation

The classi�ers that were used have di�erent approaches to pattern classi�cation which makes them well

suited for this project as it gives three di�erent perspectives into how successful the feature selection

was.

The low classi�cation rates are not a testimony of the applicability of classi�ers, rather it indicates

that low DBI features do not necessarily mean good performance when used with the RBF or LVQ

networks.

Remarkable classi�cation accuracies have been achieved with linear classi�ers in the past but with

di�erent feature selection criteria. For example, [4] reports obtaining 92% classi�cation accuracy. SOM

based techniques have been applied before and an acceptable classi�cation rate of 85% was accom-

plished by [18] using a modi�ed signal space projection classi�er. Genetic algorithms have been show

to produce results of up to 87% [72] and a modi�ed MLP classi�er has given 87% [27] classi�cation

accuracy.

The number of neurons used in both the perceptron and the LVQ networks were not determined

through thorough testing which should have been the case. Instead, a number of classi�ers were

trained with a varying number of neurons and the optimal number was approximated according to the

results.

5.5 The design

The outlines of an EEG-based BCI system that can control a mobile robot was given in section 3.5.

These outlines assume that the code that was already available, and had been used in this project,

be modi�ed and tailored to the speci�cations of a real-time system. This would be readily done

using the available resources and the fact that the MATLAB code, which does most of the processing,

could be compiled into C++ code with MATLAB's mcc compiler and included in the robot controller

application. Unfortunately, due to timing constraints, this was not completed and thus remains an
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assumption.

5.6 The report and project experience

This has been a very exciting project, mostly on account of the vast number of previously unfamiliar

technologies as well as the theories of neuroscience and signal processing. A lesson has been learned

and relates to the extent to which one can establish causal relationships between di�erent parts of a

system and its �nal outcome when proper background research has been conducted.

Many theories have been touched upon, and this report has tried to give as clear and concise

account of these as considered feasible.
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Project Management

This project began with a written proposal of expected goals and a summary of techniques that would

be used. New discoveries and knowledge obtained during the course of the project did, however, shift

the focus slightly from an implemented end product to proper research conduct and producing valid

reasons for each signi�cant design choice while the context remained the same, i.e., the design of a BCI

system. The primary reason for this is that the design could not be justi�ed unless reasons and/or

statistics were given for each choice, however successful it turned out to be, and that an implementation

of a faulty design is less useful than just the design of a correct system, which could be implemented.

Another reason for this shift in focus was the underestimated time requirements of literature gath-

ering and background research required by the theories of neuroscience and signal processing, both of

which the author was not familiar with prior to the project.

A valuable lesson was learned from this which is that a good overview of the problem domain is

pivotal for the design of a good project plan.

Below are the original project plan and a discussion on the revised plan.

6.1 Original project plan

The original project plan consisted of nine distinct tasks which were the following:
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1. Literature gathering and reading is an essential part of a research project. This will include gath-

ering literature on the brain's structure and brain waves, EEG tools, �lters, feature extraction,

classi�cation and BCI systems in general and their application. This task should be started in

the third week of June and will run for two weeks.

(a) Finding books.

(b) Finding related work.

(c) Finding scienti�c articles.

(d) Glossary of �ndings.

2. Revision of project plan may or may not be required. This depends on the literature and any

new techniques which may be encountered. This task will run in parallel with the previous one

but will only last two days. This task de�nes the �rst milestone when completed.

(a) Revise problem domain.

(b) Revise existing technologies.

(c) Create a new project plan if needed.

3. Analysis and documentation will be done during the �rst two weeks of July. Once it has been

completed, then the second milestone has been accomplished.

(a) Analyse requirements.

(b) Analyse problem domain.

(c) Analyse applicability of the techniques with regards to the time given.

(d) Document the analysis.

4. System design and documentation describe the choices which have been made based on the

information established in task 3. It will run for two weeks and the third milestone will be

reached once it has been completed.
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(a) Choose EEG system.

(b) Choose a �lter.

(c) Choose feature extraction algorithms.

(d) Choose classi�ers.

(e) Document the design and the reasons for the choices.

5. Implementation will run for two weeks where the �rst week runs in parallel with task 4. It

contains the implementation of the BCI system. Milestone 4 is reached after its completion.

(a) Implement the design described in task 4.

6. Testing and result gathering is the largest and most signi�cant part of the project plan as it

contains the actual results of the whole project. It runs for three weeks, two of which are parallel

with task 5, and de�nes milestone 5.

(a) Implement tests.

(b) Perform tests.

(c) Gather results, i.e., statistics, graphs and illustrations.

7. Implementation and testing documented runs in parallel with the last week of task 6 and de�nes

milestone 6 upon its completion.

(a) Document the implementation from task 5.

(b) Document the testing from task 6.

8. Revision of results and documentation will run for one week after everything else has been �nished.

This task can also accommodate other tasks if they take more time then anticipated. It includes

milestone 7 which will be reached upon its completion.

(a) Find the cause for any unexpected results and document.
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(b) Find any inconsistencies in the documentation.

9. Preparation for presentation will run for two weeks once everything else has been completed.

(a) Produce slides.

The Gantt diagram that describes this is given in appendix D.

Project management was a task that would be performed concurrently with the other tasks through-

out the project.

6.2 Revised project plan

There were some complications as was described earlier. The primary cause of this was the underesti-

mation of the amount of background research that needed to be conducted. The background research

became both more extensive and time consuming than expected and caused the goals of the project

to be reconsidered. Once this was apparent, the project plan was revised and structured in a way that

background research and literature gathering would run in parallel with implementation and testing

of the di�erent parts of the project. Results were gathered underway and documented when new dis-

coveries were made. This allowed for more �exibility regarding the applied techniques as there was no

prede�ned design that needed to be implemented. Rather, techniques that seemed to give reasonable

results were tested and tried when a justi�cation for their application was established.

The revised project plan included the same tasks as the original but they were ordered di�erently.

Milestones one and two had already passed when the plan was revised so the remaining �ve mile-

stones were rede�ned as follows:

• Milestone 3: Complete revision of project plan. Gather literature and background research.

• Milestone 4: Experiment protocol de�ned and experiment code �nished.

• Milestone 5: Experiments completed and data gathered and preprocessed.

74



CHAPTER 6. PROJECT MANAGEMENT 6.3. PROJECT TRACKING

• Milestone 6: Use selected techniques to select and extract features, try them using three di�erent

classi�ers.

• Milestone 7: Evaluate and document �ndings.

6.3 Project tracking

A internet diary was kept throughout the project which is shown in appendix D. There it can be seen

what milestones were reached as well as reasons for any delays.
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Chapter 7

Conclusions

This report was a dissertation of a research project that was conducted into the design of BCI systems.

Many theories and techniques were described to an extent that re�ects the authors initial unfamiliarity

with the problem domain.

One conclusion that can be drawn from the project was that background research into underlying

theories and techniques was a very important foundation on which evaluations of the results were

based. The reasons for this were, �rstly, that the results of this research could not be compared with

the results of related research unless the e�ect of each applied technique in both of them was fully

understood. Secondly, the results could not have been discussed at a professional level without a solid

knowledge of the possible causes and complications. The problem domain was BCI systems which

includes theories and techniques from many directions such as neuroscience, signal processing and ar-

ti�cial intelligence, which made this project particularly demanding.

A number of experiments were conducted and reported, and the results from these were used to

justify design decisions that were made.

Features from three di�erent domains were considered which were the spatial, time and frequency

domains, and features were selected based on a statistical measure, the DBI, which measured how
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separable the classes were with a linear classi�er.

The classi�cation accuracy of the classi�ers was varying and an average of 70% was established for

the perceptron. Related research have shown that linear classi�ers can have acceptable performance

when used on carefully selected features. There was an indication that the DBI was not a reasonable

choice in this case when more advanced techniques were available. However, the feature selection

remains statistically justi�ed which conforms to proper professional conduct which was one of the

main goals of this project.

A surprising discovery was made which included comparing the widely adopted motor imagery

exercise to the novel signal imagery exercise where the latter was shown to give a lower DBI.
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Future work

There are some speculations that remain regarding the techniques described in the report and if given

a few more months, the following would be interesting to consider.

Firstly, regarding the experiments, more of them could be conducted where subjects would be

asked to have their eyes closed and acoustic cues could be used to communicate the direction in which

the Pioneer would move. Comparing the signals obtained during such experiments to the previously

obtained signals would give some information on how the visual aspect a�ects EEG. Furthermore, the

experiments could be shortened to ensure the concentration of the subjects throughout the experiments.

Feedback to the subjects could also be included in the experiments. This is thought to have the

e�ect that the subjects are trained as well as the classi�ers, and will ultimately have better control over

the informative bursts of EEG that are otherwise only found in a relatively short segment recorded

after the cue.

A research into the physiological aspects of exercise two would also be very interesting based on its

low DBI compared to exercise one.

A more descriptive feature than the mean of the PSD might have been obtained by �nding the

principal components for the PSD of each of the exercises to �nd a speci�c frequency that best separated

them. This could then be used to further examine the di�erence between the two.

Comparing the features used here with a variety of popular features such as the combination of
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exercise one, channels C3, Cz and C4 over the PMA and the window between 0s and 0.5s, with AR

or AAR parameters.

Timing is very important in signal acquisition for BCI research and a research into the duration of

each operation of the implemented experiment paradigm, as well as the delay between the transmitting

of a command by the application and the actual execution of it by the Pioneer robot is believed to be

a worth while venture.

The di�erence of applying the Butterworth and Chebyshev �lters could be established with exper-

iments.

The classi�cation part could be extended with research into the optimal values of structural and

learning parameters such as the learning rate, epochs, etc. It could also be extended to include hybrid

systems such as comity machines where a number of classi�ers vote for the �nal output.

Lastly, elaborating on the design and implementing the real-time application. The application

could then be extended to apply a technique described in [7] that allows the system to detect when

the user intends to control the device, and is idle otherwise.
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Appendix A

Notation

This chapter of the appendix contains a summary of abbreviations, notations, fonts and symbols used
throughout the report.

Notation Description
x x is a N element vector x = (x1, . . . , xN )

Ns N seconds
AT The transpose of array A

Exercise One of the two mental exercises used in the experiment, motor
imagery or signal imagery

Neural network Biological neural network unless stated otherwise

Table A.1:
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Font Used for
LATEX emphasised font First mention of an important term

LATEX mathfont Variables.
LATEX typewriter font Function, algorithm and container names
LATEX bold font Table row and column names

Table A.2:

Symbol Meaning
# Number of instances
| Logical or

Table A.3:

Abbreviation Full name Introduced on page #
BCI Brain-computer interface 1
PMA Primary motor area 10
EEG Electroencephalogram 13
RP Readiness potential 18
DFT Discrete fourier transform 19
FFT Fast fourier transformation 20
PSD Power spectral density 21
AR Autoregressive model 22
AAR Adaptive autoregressive model 22
PCA Principal component analysis 23
DBI Davies-Bouldin index or indices 23
MSE Mean square error 48
MLP Multilayer perceptron network 26
RB(F) Radial basis (function network) 26
K-NN K-nearest neighbour clustering 27
LVQ Learning vector quantisation network 28
SOM Self-organising map algorithm 28
SCSI Small computer system interface 33
ARIA ActiveMedia robotics interface for application 33

Table A.4:
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Appendix B

Voluntary consent form

This form was created to make sure that individuals from outside the Essex University Department
of Computer Science would be aware of the risks involved and willing to participate in spite of the
possibility of a minor injury.

B.1 Voluntary consent form
UNIVERSITY OF ESSEX COMPUTER SCIENCE DEPARTMENT
BRAIN-COMPUTER INTERFACES LABORATORY
VOLUNTEER CONSENT FORM
Student: Hinrik J. Atlason
Supervisor: Dr. Francisco Sepulveda
Brief outline of project The purpose of the project is to use EEG
signals for navigating a robot using software developed for these
purposes. The EEG signals will also be analysed to find movement
event related signatures. For doing this we will develop signal
processing software, feature extraction and a classifier.
[The experiment will consist of two parts, in the first one the
subject will be asked to visualise the execution of four distinct
movements whose type will be indicated by lights on the robot and
the movement of the robot. In the second one the subject will be
asked to imagine signals travelling from its brain to the
corresponding limb which is, again, indicated by lights on the
robot and the movement of the robot. Each part consists of four
trials, each lasting for four minutes. Rest will be according to
the subject's wishes.]
Refreshments (water/juice) and rest periods will be provided to
the volunteer subject as and when he/she wishes.
Outline of procedures to be used: An EEG cap will be placed on the
subject's head. Electrode gel will be placed into cap orifices by
means of a disposable blunt needle. The subject will be seating
on a comfortable chair while brain activity signals are recorded
for a number of situations concerning guided voluntary movement
intentions. The subject will be in front of a computer. Abrasion
of the skin with the blunt needle may be necessary if the
impedance between skin and electrode is too high (i.e., above 5k
).
Possible Hazards: Improper abrasion with the blunt needle may
cause skin damage. Abrasion procedures are to be done according to
the instructions provided EEG equipment manual and under
supervision by Dr Sepulveda.
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Possible discomfort and distress: Although not usual, discomfort
and subsequent distress may result from the use of the head cap.
Usually, discomfort subdues after about 15-30 min of cap
placement. Prolonged use of the equipment (several hours to a
day) may cause discomfort as well.
Experience in experiments involving potential hazard, discomfort
or distress. Dr. Sepulveda, who is going to be present in all
experiments, has had experience with similar experimental
conditions and EEG equipment. Further, Dr. Sepulveda has 15 years
of experience in other areas of electrophysiological
experimentation with humans under potentially hazardous and
distressful situations. He has been trained to deal with these
situations both involving normal and disabled subjects.
Electrical / electronic equipment will be connected to the
subject. The equipment to be used has been approved for use with
humans beings. All equipment is electrically isolated from the
subject.
Ethical Clearance Use of EEG equipment on human subjects has been
approved by the University of Essex's Ethical Committee.
The identity of all volunteers will be kept anonymous All
volunteers can abandon an experiment at any time
I have read the complete document and I certify that I am aware of
the potential hazards involved and that I accept to be a
volunteer.
___________________________________________________________________
Volunteer's name Date
Volunteer's signature
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Appendix C

Source code

Source code that was mentioned in the report is given here. The remaining source code can be found

on the CD that accompanies this report.

C.1 experiment.cpp
// Most of this code was made by F. Sepulveda.
// Hinrik J. Atlason modified it.
#include <aria.h>
#include <windows.h>
#include <stdlib.h>
#include <conio.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <io.h>
#include <cstdio>
#include "stdafx.h"
#include "scsi.h"
long st = 0; long et = 0; int bn = 0; unsigned long
samplmark[500]; char z = 0; FILE *file; FILE *timefile;
class MyAcq : public CSCSI {

virtual void SCSI_OnMessage(LPCSTR msg) {
MessageBox(NULL,msg, "Error", MB_OK);

}
virtual void SCSI_OnForcedAbort(){}
virtual void SCSI_OnShowBufferStatus(int bytecount){}
virtual void SCSI_OnDispatchData(BYTE *data, int num, bool first);

public:
};
void MyAcq::SCSI_OnDispatchData(BYTE *data, int num, bool first) {

if(!ferror(file))
{

fwrite(data, num, sizeof(char), file);
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}
}
// critical variable definitions:

#define true 1
#define false 0
#define CONX 80 // console size
#define CONY 25
#define FOREGROUND_BLUE 0x0001
#define FOREGROUND_GREEN 0x0002
#define FOREGROUND_RED 0x0004
#define FOREGROUND_INTENSITY 0x0008
#define BACKGROUND_BLUE 0x0010
#define BACKGROUND_GREEN 0x0020
#define BACKGROUND_RED 0x0040
#define BACKGROUND_INTENSITY 0x0080
#define BACKGROUND_WHITE (WORD) 0x00f0
#define BACKGROUND_CYAN (WORD) 0x0030
#define FOREGROUND_YELLOW (WORD) 0x0006
#define FOREGROUND_CYAN (WORD) 0x0003
#define FOREGROUND_WHITE (WORD) 0x0007
#define n1 40 // was 80

// general variables
int i,ii,iii,j,k,m;
int lp_num; // lp_num = l when l<0
char choice; // char for menu choices
char cyclefile[20],filename[40]; // output file name root
unsigned long bw; // console variable: bytes

// written per call
char fillchar=' '; // char for cleaning video

// buffer
HANDLE hdout,hdin; // console handlers
COORD xycoord; // structured variable for

// cursor position
FILE *datafile,*network,*fwd_file,*fp,*filein;
DWORD cWritten;
const char *seq[n1]=
{"RIGHT ARM","LEFT ARM","RIGHT ARM","FEET","MOUTH",
"RIGHT ARM","LEFT ARM","MOUTH","FEET","FEET","MOUTH",
"RIGHT ARM","LEFT ARM","MOUTH","FEET","FEET","MOUTH",
"LEFT ARM","RIGHT ARM","LEFT ARM","RIGHT ARM","FEET","MOUTH",
"RIGHT ARM","LEFT ARM","MOUTH","FEET","FEET","MOUTH",
"LEFT ARM","RIGHT ARM","LEFT ARM","RIGHT ARM","FEET","MOUTH",
"RIGHT ARM","LEFT ARM","MOUTH","FEET","LEFT ARM"};
MyAcq Acq;
ArRobot *robot;
ArGripper *gripper;

// ****************************************************
// ****************** SETUP ***********************
// ****************************************************
// File1: 1a_movement & 1a_movement_mark
// File2: 1b_movement & 1b_movement_mark
// File3: 2a_movement & 2a_movement_mark
// File4: 2b_movement & 2b_movement_mark
// File5: 1a_signal & 1a_signalt_mark
// File6: 1b_signal & 1b_signal_mark
// File7: 2a_signal & 2a_signal_mark
// File8: 2b_signal & 2b_signal_mark

// This should be changed to 20 and 39 for sequence 2.
int start=0;
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int stop=19;
int count=start-1;

/***********************************************************************/
// FUNCTION DECLARATIONS
/***********************************************************************/
_inline void gotoxy(short a, short b);
_inline void clrscr(void);
_inline void mmenu(void);
_inline void logo(void);
_inline void get_option(void);
_inline void browse_any_file(void);
void runrobot(void);
ArGlobalFunctor runrobotCB(&runrobot);
void blinkAll(void);
void cue(void);
/***********************************************************************/
// PROGRAM ROUTINES
/***********************************************************************/
/***********************************************************************/
void blinkAll() {

robot->com2Bytes(ArCommands::DIGOUT,0x01,0x01); // TURNS RIGHT LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x04,0x04); // TURNS LEFT LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x02,0x02); // TURNS FRONT LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x19,0x09); // TURNS BACK LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x01,0x02); // TURNS RIGHT LIGHT OFF!!
robot->com2Bytes(ArCommands::DIGOUT,0x04,0x09); // TURNS LEFT LIGHT OFF!!
robot->com2Bytes(ArCommands::DIGOUT,0x02,0x09); // TURNS FRONT LIGHT OFF!!
robot->com2Bytes(ArCommands::DIGOUT,0x19,0x01); // TURNS BACK LIGHT OFF!!
robot->com2Bytes(ArCommands::DIGOUT,0x01,0x02); // TURN RIGHT LIGHT OFF AGAIN!!

}
void cue() {

if((count+1)!=(n1))
{

if(seq[count+1]=="RIGHT ARM")
{

robot->com2Bytes(ArCommands::DIGOUT,0x01,0x01); // TURNS RIGHT LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x01,0x02); // TURNS FRONT LIGHT OFF!!

}
else if(seq[count+1]=="LEFT ARM")
{

robot->com2Bytes(ArCommands::DIGOUT,0x04,0x04); // TURNS LEFT LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x04,0x09); // TURNS LEFT LIGHT OFF!!

}
else if(seq[count+1]=="FEET")
{

robot->com2Bytes(ArCommands::DIGOUT,0x02,0x02); // TURNS FRONT LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x02,0x09); // TURNS FRONT LIGHT OFF!!

}
else // MOUTH
{

robot->com2Bytes(ArCommands::DIGOUT,0x19,0x08); //TURNS BACK LIGHT ON!!!
robot->com2Bytes(ArCommands::DIGOUT,0x19,0x10); //TURNS BACK LIGHT OFF!!

}
}

} void runrobot(void) {
if(count>=start)
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{
gotoxy(36,19);cprintf("%6s",seq[count]);gotoxy(0,0);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
blinkAll();
bn++;
gotoxy(36,19);_cputs(" ");gotoxy(0,0);
Sleep(6000);

}
if(stop>count)
{

if( seq[count+1]=="RIGHT ARM" )
{

cue();
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
robot -> setVel2(100,-100);

}
else if( seq[count+1]=="LEFT ARM" )
{

cue();
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
robot -> setVel2(-100,100);

}
else if( seq[count+1]=="FEET" )
{

cue();
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
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Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
robot -> setVel2(100,100);

}
else // MOUTH
{

cue();
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
samplmark[bn] = Acq.SCSI_GetCurrentSampleNum();
bn++;
Sleep(1000);
robot -> setVel2(-100,-100);

}
}
count++;
if((count>stop))
{

robot->lock();
robot->disconnect();
robot->unlock();
Aria::shutdown();
gotoxy(36,19);_cputs(" ");
gotoxy(36,23);printf(" END \n");

}
}
int run_sequence(void) {

char s[20];
int r = 0;
clock_t t1, t2;
double dt;
gotoxy(30,21);
printf("Output file: ");
scanf("%s", s);
file = fopen(s, "wb");
bn=0;
gotoxy(30,21);
SetConsoleTextAttribute(hdout,FOREGROUND_BLUE|FOREGROUND_WHITE|BACKGROUND_BLUE);
printf( " ");
gotoxy(25,17);
SetConsoleTextAttribute(hdout,FOREGROUND_BLUE|FOREGROUND_WHITE|BACKGROUND_RED);
blinkAll();
blinkAll();
Sleep(2000);
gotoxy(25,17);
_cputs("ÉÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍÍÍ�");gotoxy(25,18);
_cputs("o GET o");gotoxy(25,19);
_cputs("o READY o");gotoxy(25,20);
_cputs("ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ1

4");
gotoxy(0,0);
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if(!Acq.SCSI_Init()) {
//printf("Init Error\n");
//return 1;

}
Acq.SCSI_SetSampleRate(SAMPLES_256SPS);
gotoxy(25,18);
_cputs("o o");gotoxy(25,19);
_cputs("o o");gotoxy(0,0);
choice='z';
i=0;
t1=clock();
Acq.SCSI_StartSampling();
robot->run(true);
t2=clock();
Acq.SCSI_StopSampling();
fclose(file);
gotoxy(28,19);
printf("Marker file: ");
scanf("%s", s);
timefile = fopen(s, "w");
for(int ij = 0; ij<bn; ij++)

fprintf (timefile, "%i\n",samplmark[ij]);
fclose(timefile);
dt = (double)(t2 - t1) / CLOCKS_PER_SEC;
gotoxy(30,23);
printf( "%8.4f seconds\n", dt );
gotoxy(28,19);_cputs(" Stop/Esc ");
choice='z'; while((choice!=27)) choice=_getch();
gotoxy(30,23);
SetConsoleTextAttribute(hdout,FOREGROUND_BLUE|FOREGROUND_WHITE|BACKGROUND_BLUE);
printf( " ");
return 1;

}
/***********************************************************************/
/***********************************************************************/
void examine_ASCII_files(void) {
SetConsoleTextAttribute(hdout,FOREGROUND_BLUE|FOREGROUND_WHITE|BACKGROUND_BLUE);
mmenu();
gotoxy(25,11);
cputs("2 - Examine ASCII Files ÍÍÍÍ>");
gotoxy(55,10);
cputs("ÉÍÍÍÍ Check Files ÍÍÍÍÍ�");gotoxy(55,11);
cputs("o o");gotoxy(55,12);
cputs("o 1 - Browse C program o");gotoxy(55,13);
cputs("o 2 - Browse any file o");gotoxy(55,14);
cputs("o 3 - Back to Main o");gotoxy(55,15);
cputs("o o");gotoxy(55,16);
cputs("ÈÍÍÍÍÍÍ Choice ÍÍÍÍÍÍ1

4");smenu:
gotoxy(71,16);cputs("?");
gotoxy(71,16);
choice='z';
while(choice<49 || choice>51) choice=getch();
gotoxy(71,16);
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cprintf("%c",choice);
switch(choice)
{

case 49:
{
gotoxy(61,20);cputs(" Back");gotoxy(61,20);
system("browse.com exp01_wrist.cpp");
Sleep(500);
gotoxy(61,20);
cputs(" ");
break;

}
case 50:
{
browse_any_file();
break;

}
case 51: goto toMain;

}
gotoxy(46,2);

goto smenu;
toMain:clrscr();

}
//######################################################################
//######################################################################
// MAIN PROGRAM
//######################################################################
//######################################################################
int main(void)//(int argc, char* argv[]) //void _cdecl main() {

int ret;
std::string str;
// the connection for Remote Host and Simulator
//ArTcpConnection con;
// the connection through Serial Link to the robot
ArSerialConnection con;
bool useSim=false;
robot = new ArRobot;
gripper = new ArGripper(robot);
// mandatory init
Aria::init();
// open the connection, if this fails exit
if ((ret = con.open()) != 0)
{

str = con.getOpenMessage(ret);
printf("Open failed: %s\n", str.c_str());
Aria::shutdown();
return 1;

}
// set the device connection on the robot
robot->setDeviceConnection(&con);
// try to connect, if we fail exit
if (!robot->blockingConnect())
{

printf("Could not connect to robot... exiting\n");
Aria::shutdown();
return 1;

}
// user task
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robot->addUserTask("runrobot", 50, &runrobotCB);
// turn on the motors, turn off amigobot sounds
robot->comInt(ArCommands::SONAR, 1);
robot->comInt(ArCommands::ENABLE, 1);
robot->comInt(ArCommands::SOUNDTOG, 0);
// start the robot running, true so that if we lose connection the run stops
//gripper->

// setup colsole properties
hdin=GetStdHandle(STD_INPUT_HANDLE);
hdout=GetStdHandle(STD_OUTPUT_HANDLE);
xycoord.X=CONX;
xycoord.Y=CONY;
SetConsoleMode(hdin,ENABLE_LINE_INPUT|ENABLE_ECHO_INPUT);
SetConsoleScreenBufferSize(hdout,xycoord);
SetConsoleTextAttribute(hdout,FOREGROUND_WHITE|BACKGROUND_BLUE);
clrscr();
logo();
mmenu();
mainmenu:
switch(choice)

{
case 49:

{
gotoxy(0,0);
run_sequence();
logo();mmenu();break;
}

case 50:
{
logo();mmenu();break;
}

case 51:
{
logo();mmenu();break;
}

case 52:
{
logo();mmenu();break;
}

case 27: goto quitprogram;
}

get_option();
goto mainmenu;
quitprogram:
// restorrig board and console before quiting
xycoord.X=0;
xycoord.Y=0;
FillConsoleOutputAttribute(hdout,FOREGROUND_GREEN|FOREGROUND_RED|FOREGROUND_BLUE,

2000,xycoord,&bw);
FillConsoleOutputCharacter(hdout,fillchar,2000,xycoord,&bw);
FillConsoleOutputAttribute(hdout,FOREGROUND_GREEN|FOREGROUND_RED|FOREGROUND_BLUE,

2000,xycoord,&bw);
SetConsoleTextAttribute(hdout,FOREGROUND_GREEN|FOREGROUND_BLUE|FOREGROUND_RED);
gotoxy(26,12);

}
//######################################################################
//######################################################################
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//######################################################################
//_____________________//_____________________//_____________________
// Function Definitions
//_____________________//_____________________//_____________________
_inline void get_option(void)
{
gotoxy(50,15);
_cputs("?");
gotoxy(50,15);
choice='z';
while( ((choice<49) || (choice>57)) & (choice!=27)) choice=_getch();
gotoxy(50,15);
cprintf("%c",choice);

}
//_____________________//_____________________//_____________________
_inline void gotoxy(short a, short b) {

xycoord.X=a;
xycoord.Y=b;
SetConsoleCursorPosition(hdout,xycoord);

}
//_____________________//_____________________//_____________________
_inline void clrscr(void) { xycoord.X=0;

xycoord.Y=0;
FillConsoleOutputAttribute(hdout,FOREGROUND_WHITE|BACKGROUND_BLUE,2000,

xycoord,&bw);
FillConsoleOutputCharacter(hdout,fillchar,2000,xycoord,&bw);

}
//_____________________//_____________________//_____________________
_inline void mmenu(void)
{
gotoxy(0,8);
_cputs(" ÉÍÍÍÍÍÍÍÍÍÍÍ MAIN MENU ÍÍÍÍÍÍÍÍÍÍÍ� ");
gotoxy(0,9);
_cputs(" É1

4 È�");
gotoxy(0,10);
_cputs(" o 1 - Run Experiment o");
gotoxy(0,11);

_cputs(" o o");
gotoxy(0,12);
_cputs(" o ************************** o");
gotoxy(0,13);
_cputs(" o ** SET PROCESS PRIORITY ** o");
gotoxy(0,14);
_cputs(" o o");
gotoxy(0,15);
_cputs(" È� Choice (or Esc to quit) É1

4");
gotoxy(0,16);
_cputs(" ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ1

4 ");
}
//_____________________//_____________________//_____________________
_inline void logo(void) {
SetConsoleTextAttribute(hdout,FOREGROUND_WHITE|BACKGROUND_BLUE);
gotoxy(0,2);
_cputs(" BCI - Wrist Experiment 01");
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gotoxy(0,4);
_cputs(" April 14, 2004");
SetConsoleTextAttribute(hdout,FOREGROUND_WHITE|BACKGROUND_BLUE);

}
//_____________________//_____________________//_____________________
void browse_any_file(void) {
char f_to_run[40]="browse.com ";
gotoxy(67,19);cputs("o");
gotoxy(56,20);
cputs("ÉÍÍÍÍÍÍÍÍÍÍÊÍÍÍÍÍÍÍÍÍÍÍ�");gotoxy(56,21);
cputs("o Enter File Name : o");gotoxy(56,22);
cputs("o o");gotoxy(56,23);
cputs("ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ1

4");
gotoxy(65,22);
_cscanf("%s",&filename);
strcat(f_to_run,filename);
gotoxy(56,20);
cputs(" ");gotoxy(56,21);
cputs(" ");gotoxy(56,22);
cputs(" ");gotoxy(56,23);
cputs(" ");
gotoxy(61,20);cputs(" Back");gotoxy(61,20);
system(f_to_run);
gotoxy(67,19);cputs(" ");
Sleep(500);
gotoxy(61,20);
cputs(" ");

}

C.2 eegconv.m
% This file was obtained from the BCI group
% and was not developed by Hinrik J. Atlason.
function [s] = EEGConv(filename)
f = fopen(filename);
s = fread(f, [1 inf], 'uint8');
fclose(f);
for i = (size(s,2)/2):-1:1

ss(i) = s(2*i-1)*256 + s(2*i);
end
sss = reshape(ss, [24 size(ss, 2)/24]);
sss = sss - 28672;
sss = sss / 363.63;
s = sss;

C.3 preprocess.m
% This file combines and splits the data where appropriate.
for xxxx=1:3

if xxxx==1
s = 'p';
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elseif xxxx==2
s = 'j';

elseif xxxx==3
s = 'e';

end
for x=1:2

if x==1
c = 'm';

else
c = 's';

end
RightFull = [];
LeftFull = [];
ForwardFull = [];
BackwardFull = [];
for xx=1:2 % 1 or 2

if xx==1
n = '1';

else
n = '2';

end
for xxx=1:2 % a or b

if xxx==1
p = 'a';

else
p = 'b';

end
Data = eegconv(['raw\' n p c s]);
f = fopen(['raw\' n p c 'm' s]);
Markers = fscanf(f,'%d');
fclose(f);
i = 1;
Markers = Temp;
% (Right arm=1, Left arm=2, Feet=3, Mouth=4)
SequenceA = [1,2,1,3,4,1,2,4,3,3,4,1,2,4,3,3,4,2,1,2];
SequenceB = [1,3,4,1,2,4,3,3,4,2,1,2,1,3,4,1,2,4,3,2];
if xxx==1

Sequence = SequenceA;
else

Sequence = SequenceB;
end
seq=1;
Right=[];
Left=[];
Forward=[];
Backward=[];
for i=1:7:size(Markers,2)

if( Sequence(seq)==1 )
for j=0:5

start = size(Right,2)+1;
stop = start+(Markers(i+j+1)-Markers(i+j));
Right(1:24,start:stop)=Data(1:24,Markers(i+j):

Markers(i+j+1));
Right(25,start)=1;
if (i+j+1)==(i+6)

Right(25,stop)=1;
end

end
end
if( Sequence(seq)==2 )
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for j=0:5
start = size(Left,2)+1;
stop = start+(Markers(i+j+1)-Markers(i+j));
Left(1:24,start:stop)=Data(1:24,Markers(i+j):

Markers(i+j+1));
Left(25,start)=1;
if (i+j+1)==(i+6)

Left(25,stop)=1;
end

end
end
if( Sequence(seq)==3 )

for j=0:5
start = size(Forward,2)+1;
stop = start+(Markers(i+j+1)-Markers(i+j));
Forward(1:24,start:stop)=Data(1:24,Markers(i+j):

Markers(i+j+1));
Forward(25,start)=1;
if (i+j+1)==(i+6)

Forward(25,stop)=1;
end

end
end
if( Sequence(seq)==4 )

for j=0:5
start = size(Backward,2)+1;
stop = start+(Markers(i+j+1)-Markers(i+j));
Backward(1:24,start:stop)=Data(1:24,Markers(i+j):

Markers(i+j+1));
Backward(25,start)=1;
if (i+j+1)==(i+6)

Backward(25,stop)=1;
end

end
end
seq = seq+1;

end % Finnished with markers.
RightFull = [RightFull Right];
LeftFull = [LeftFull Left];
ForwardFull = [ForwardFull Forward];
BackwardFull = [BackwardFull Backward];
% a or b

end
% 1 or 2

end
f = fopen(['preprocessed\right' c s], 'wb');
fwrite(f, RightFull, 'double');
fclose(f);
f = fopen(['preprocessed\left' c s], 'wb');
fwrite(f, LeftFull, 'double');
fclose(f);
f = fopen(['preprocessed\forward' c s], 'wb');
fwrite(f, ForwardFull, 'double');
fclose(f);
f = fopen(['preprocessed\backward' c s], 'wb');
fwrite(f, BackwardFull, 'double');
fclose(f);

end % m or s
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end % 1 or 2 (subject)

C.4 bandpass.m

function Output = bandpass(Input,n,low,high,channel1,channel2)
Wn=[low high]/128;
for i=channel1:channel2

[b,a]=butter(n,Wn);
if i==channel1

Output=filtfilt(b,a,Input(i,:));
else

Output=[Output; filtfilt(b,a,Input(i,:))];
end

end

C.5 extractsegment.m

function [Output, last] = extractSegment(Input,first,segment)
Output = []; count = 0;
if segment == 0

from = 1;
to = 7;

elseif segment == 0.5
from = 1;
to = 2;

else
from = segment;
to = segment+1;

end
keeprunning = 1;
for i=first:size(Input,2)

if keeprunning == 1
if Input(25,i) == 1

count = count+1;
if count == from

m1 = i;
elseif count == to

m2 = i;
Output = Input(:,m1:m2);

end
if count == 7

keeprunning = 0;
last = i;

end
end

end
end
if segment == 0.5

Temp = Output(:,1:128);
Output = [];
Output = Temp;

end
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C.6 psd.m
function Output = psd(Input)
Temp = dspdata.psd(periodogram(Input));
Output = Temp.data;

C.7 calculateenergy.m
function Output = calculateEnergy(Input)
Output = []; TempEnergy = []; e = 0;
length = size(Input,2);
for y = 1:length

e = e + abs(Input(:,y)).^2;
end
Output = e/length;

C.8 perceptron.m
clear all;
SAMPLENUMBER = 1; FILTERORDER = 4; FILTERLOWER = 0.5; FILTERHIGHER
= 45;
experiment = 's';
f = fopen(['preprocessed/' 'right' experiment 'p']);
RawDataRightS1 = fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'left' experiment 'p']); RawDataLeftS1 =
fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'right' experiment 'e']); RawDataRightS2 =
fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'left' experiment 'e']); RawDataLeftS2 =
fread(f, [25 inf], 'double'); fclose(f);
Accuracy = []; Mse = [];
for run = 1:3

if run == 1
tr1=1;tr2=7;
te1=8;te2=13;

elseif run == 2
tr1=8;tr2=13;
te1=14;te2=20;

else
te1=1;te2=7;
tr1=14;tr2=20;

end
s1ri = 0; s2ri = 0; s1li = 0; s2li = 0;
Train = [];
Target = [];
Val.P = [];
Val.T = [];
Test = [];
TestTarget = [];
for i = 1:20

[S1rs, s1ri] = extractSegment(RawDataRightS1, s1ri + 1, SAMPLENUMBER);
[S2rs, s2ri] = extractSegment(RawDataRightS2, s2ri + 1, SAMPLENUMBER);
[S1ls, s1li] = extractSegment(RawDataLeftS1, s1li + 1, SAMPLENUMBER);
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[S2ls, s2li] = extractSegment(RawDataLeftS2, s2li + 1, SAMPLENUMBER);
TrainTempRightS1 = [];
TrainTempLeftS1 = [];
TrainTempRightS2 = [];
TrainTempLeftS2 = [];
TestTempRightS1 = [];
TestTempLeftS1 = [];
TestTempRightS2 = [];
TestTempLeftS2 = [];
ValTempRightS1 = [];
ValTempLeftS1 = [];
ValTempRightS2 = [];
ValTempLeftS2 = [];
for c = 1:5

if c == 1
FROMCHANNEL = 1;
TOCHANNEL = 1;

elseif c == 2
FROMCHANNEL = 2;
TOCHANNEL = 2;

elseif c == 3
FROMCHANNEL = 5;
TOCHANNEL = 5;

elseif c == 4
FROMCHANNEL = 6;
TOCHANNEL = 6;

elseif c == 5
FROMCHANNEL = 20;
TOCHANNEL = 20;

end
S1rf = bandpass(S1rs, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S2rf = bandpass(S2rs, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S1lf = bandpass(S1ls, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S2lf = bandpass(S2ls, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S1rv = mean(S1rf);
S2rv = mean(S2rf);
S1lv = mean(S1lf);
S2lv = mean(S2lf);
if tr1 <= i && i < tr2

TrainTempRightS1 = [TrainTempRightS1; S1rv];
TrainTempLeftS1 = [TrainTempLeftS1; S1lv];
TrainTempRightS2 = [TrainTempRightS2; S2rv];
TrainTempLeftS2 = [TrainTempLeftS2; S2lv];
if size(TrainTempRightS1,1) == 5

Target = [Target [1;-1] [-1;1] [1;-1] [-1;1]];
end

elseif te1 <= i && i < te2
TestTempRightS1 = [TestTempRightS1; S1rv];
TestTempLeftS1 = [TestTempLeftS1; S1lv];
TestTempRightS2 = [TestTempRightS2; S2rv];
TestTempLeftS2 = [TestTempLeftS2; S2lv];
if size(TestTempRightS1,1) == 5

TestTarget = [TestTarget [1;-1] [-1;1] [1;-1] [-1;1]];
end
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else
ValTempRightS1 = [ValTempRightS1; S1rv];
ValTempLeftS1 = [ValTempLeftS1; S1lv];
ValTempRightS2 = [ValTempRightS2; S2rv];
ValTempLeftS2 = [ValTempLeftS2; S2lv];
if size(ValTempRightS1,1) == 5

Val.T = [Val.T [1;-1] [-1;1] [1;-1] [-1;1]];
end

end
end
Train = [Train TrainTempRightS1 TrainTempLeftS1 TrainTempRightS2

TrainTempLeftS2];
Test = [Test TestTempRightS1 TestTempLeftS1 TestTempRightS2 TestTempLeftS2];
Val.P = [Val.P ValTempRightS1 ValTempLeftS1 ValTempRightS2 ValTempLeftS2];

end
net = newff(minmax(Train),[2],{'purelin'},'traingd');
net.trainParam.lr = 0.05;
net.trainParam.epochs = 500;
net.performFcn = 'msereg';
net.trainParam.goal = 1e-5;
net = init(net);
net = train(net, Train, Target, [], [], Val);
Y = sim(net, Test);
correctright = 0;
correctleft = 0;
for i = 1:size(Y,2)

if mod(i,2)==1 && Y(1,i)>Y(2,i)
correctright = correctright + 1;

elseif mod(i,2)==0 && Y(1,i)<Y(2,i)
correctleft = correctleft + 1;

end
end
Accuracy = [Accuracy; [(correctright+correctleft)/size(Y,2)*100 correctright

correctleft] ];
Mse = [Mse mse(TestTarget-Y)];

end
mean(Accuracy) mean(Mse)

C.9 rbf.m
clear all;
SAMPLENUMBER = 1; FILTERORDER = 4; FILTERLOWER = 0.5; FILTERHIGHER
= 45;
experiment = 's';
f = fopen(['preprocessed/' 'right' experiment 'p']);
RawDataRightS1 = fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'left' experiment 'p']); RawDataLeftS1 =
fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'right' experiment 'e']); RawDataRightS2 =
fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'left' experiment 'e']); RawDataLeftS2 =
fread(f, [25 inf], 'double'); fclose(f);
Accuracy = []; Mse = [];
for run = 1:5

splitt = run*4;
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s1ri = 0; s2ri = 0; s1li = 0; s2li = 0;
Train = [];
Target = [];
Val.P = [];
Val.T = [];
Test = [];
TestTarget = [];
for i = 1:20

[S1rs, s1ri] = extractSegment(RawDataRightS1, s1ri + 1, SAMPLENUMBER);
[S2rs, s2ri] = extractSegment(RawDataRightS2, s2ri + 1, SAMPLENUMBER);
[S1ls, s1li] = extractSegment(RawDataLeftS1, s1li + 1, SAMPLENUMBER);
[S2ls, s2li] = extractSegment(RawDataLeftS2, s2li + 1, SAMPLENUMBER);
TrainTempRightS1 = [];
TrainTempLeftS1 = [];
TrainTempRightS2 = [];
TrainTempLeftS2 = [];
TestTempRightS1 = [];
TestTempLeftS1 = [];
TestTempRightS2 = [];
TestTempLeftS2 = [];
ValTempRightS1 = [];
ValTempLeftS1 = [];
ValTempRightS2 = [];
ValTempLeftS2 = [];
for c = 1:5

if c == 1
FROMCHANNEL = 1;
TOCHANNEL = 1;

elseif c == 2
FROMCHANNEL = 2;
TOCHANNEL = 2;

elseif c == 3
FROMCHANNEL = 5;
TOCHANNEL = 5;

elseif c == 4
FROMCHANNEL = 6;
TOCHANNEL = 6;

elseif c == 5
FROMCHANNEL = 20;
TOCHANNEL = 20;

end
S1rf = bandpass(S1rs, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S2rf = bandpass(S2rs, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S1lf = bandpass(S1ls, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S2lf = bandpass(S2ls, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S1rv = mean(S1rf);
S2rv = mean(S2rf);
S1lv = mean(S1lf);
S2lv = mean(S2lf);
if (i <= splitt-4) || (splitt < i)

TrainTempRightS1 = [TrainTempRightS1; S1rv];
TrainTempLeftS1 = [TrainTempLeftS1; S1lv];
TrainTempRightS2 = [TrainTempRightS2; S2rv];
TrainTempLeftS2 = [TrainTempLeftS2; S2lv];
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if size(TrainTempRightS1,1) == 5
Target = [Target [1;-1] [-1;1] [1;-1] [-1;1]];

end
else

TestTempRightS1 = [TestTempRightS1; S1rv];
TestTempLeftS1 = [TestTempLeftS1; S1lv];
TestTempRightS2 = [TestTempRightS2; S2rv];
TestTempLeftS2 = [TestTempLeftS2; S2lv];
if size(TestTempRightS1,1) == 5

TestTarget = [TestTarget [1;-1] [-1;1] [1;-1] [-1;1]];
end

end
end
Train = [Train TrainTempRightS1 TrainTempLeftS1 TrainTempRightS2

TrainTempLeftS2];
Test = [Test TestTempRightS1 TestTempLeftS1 TestTempRightS2 TestTempLeftS2];

end
net = newrb(Train,Target,0.05);
Y = sim(net, Test);
correctright = 0;
correctleft = 0;
for i = 1:size(Y,2)

if mod(i,2)==1 && Y(1,i)>Y(2,i)
correctright = correctright + 1;

elseif mod(i,2)==0 && Y(1,i)<Y(2,i)
correctleft = correctleft + 1;

end
end
Accuracy = [Accuracy; [(correctright+correctleft)/size(Y,2)*100 correctright

correctleft] ];
Mse = [Mse mse(TestTarget-Y)];

end
mean(Accuracy) mean(Mse)

C.10 lvq.m
clear all;
SAMPLENUMBER = 1; FILTERORDER = 4; FILTERLOWER = 0.5; FILTERHIGHER
= 45;
experiment = 's';
f = fopen(['preprocessed/' 'right' experiment 'p']);
RawDataRightS1 = fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'left' experiment 'p']); RawDataLeftS1 =
fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'right' experiment 'e']); RawDataRightS2 =
fread(f, [25 inf], 'double'); fclose(f); f =
fopen(['preprocessed/' 'left' experiment 'e']); RawDataLeftS2 =
fread(f, [25 inf], 'double'); fclose(f);
Accuracy = []; Mse = [];
for run = 1:5

splitt = run*4;
s1ri = 0; s2ri = 0; s1li = 0; s2li = 0;
Train = [];
Target = [];
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Val.P = [];
Val.T = [];
Test = [];
TestTarget = [];
for i = 1:20

[S1rs, s1ri] = extractSegment(RawDataRightS1, s1ri + 1, SAMPLENUMBER);
[S2rs, s2ri] = extractSegment(RawDataRightS2, s2ri + 1, SAMPLENUMBER);
[S1ls, s1li] = extractSegment(RawDataLeftS1, s1li + 1, SAMPLENUMBER);
[S2ls, s2li] = extractSegment(RawDataLeftS2, s2li + 1, SAMPLENUMBER);
TrainTempRightS1 = [];
TrainTempLeftS1 = [];
TrainTempRightS2 = [];
TrainTempLeftS2 = [];
TestTempRightS1 = [];
TestTempLeftS1 = [];
TestTempRightS2 = [];
TestTempLeftS2 = [];
ValTempRightS1 = [];
ValTempLeftS1 = [];
ValTempRightS2 = [];
ValTempLeftS2 = [];
for c = 1:5

if c == 1
FROMCHANNEL = 1;
TOCHANNEL = 1;

elseif c == 2
FROMCHANNEL = 2;
TOCHANNEL = 2;

elseif c == 3
FROMCHANNEL = 5;
TOCHANNEL = 5;

elseif c == 4
FROMCHANNEL = 6;
TOCHANNEL = 6;

elseif c == 5
FROMCHANNEL = 20;
TOCHANNEL = 20;

end
S1rf = bandpass(S1rs, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S2rf = bandpass(S2rs, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S1lf = bandpass(S1ls, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S2lf = bandpass(S2ls, FILTERORDER, FILTERLOWER, FILTERHIGHER, FROMCHANNEL,

TOCHANNEL);
S1rv = mean(S1rf);
S2rv = mean(S2rf);
S1lv = mean(S1lf);
S2lv = mean(S2lf);
if i < 14

TrainTempRightS1 = [TrainTempRightS1; S1rv];
TrainTempLeftS1 = [TrainTempLeftS1; S1lv];
TrainTempRightS2 = [TrainTempRightS2; S2rv];
TrainTempLeftS2 = [TrainTempLeftS2; S2lv];
if size(TrainTempRightS1,1) == 5

Target = [Target 1 2 1 2];
end
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else
TestTempRightS1 = [TestTempRightS1; S1rv];
TestTempLeftS1 = [TestTempLeftS1; S1lv];
TestTempRightS2 = [TestTempRightS2; S2rv];
TestTempLeftS2 = [TestTempLeftS2; S2lv];
if size(TestTempRightS1,1) == 5

TestTarget = [TestTarget 1 2 1 2];
end

end
end
Train = [Train TrainTempRightS1 TrainTempLeftS1 TrainTempRightS2

TrainTempLeftS2];
Test = [Test TestTempRightS1 TestTempLeftS1 TestTempRightS2 TestTempLeftS2];

end
net = newlvq(minmax(Train),18,[0.5 0.5], 0.05);
net.trainParam.epochs = 500;
net.trainParam.goal = 1e-5;
net = train(net, Train, ind2vec(Target));
Y = sim(net, Test);
Y = vec2ind(Y);
correctright = 0;
correctleft = 0;
for i = 1:2:size(Y,2)

if Y(i) == 1, correctright = correctright + 1;
elseif Y(i+1) == 2, correctleft = correctleft + 1;
end

end
Accuracy = [Accuracy; [(correctright+correctleft)/size(Y,2)*100 correctright

correctleft] ];
Mse = [Mse mse(TestTarget-Y)];

end
mean(Accuracy) mean(Mse)
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Project management

Figures and diagrams that relate to project management are given here.
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Tasks Milestones
Week1(20/6 −
26/6)

Literature gathering & reading: A number of books were ob-
tained from the library on neuroscience, neural networks, fea-
ture extraction and �ltering. Papers include Essex university
research papers on BCI systems and neural networks.

Week2(27/6 −
3/7)

Literature gathering & reading: Further reading of practi-
cal applications of BCI systems, neuroscience and feature
extraction. Techniques for data �ltering and training data
pre processing were also considered. A procedure for training
data gathering was formulated and is pending review. The
next step will most likely be to schedule a session where train-
ing data is gathered (brain wave signals). Further literature
gathering & reading will proceed throughout the next weeks
as necessary.

Milestone 1:
reached on
time.

Week3(4/7 −
10/7)

Analysis & documentation: Analysis continues for the fea-
ture selection part. Relevant techniques are documented for
later use.

Week4(11/7 −
17/7)

Analysis & documentation: Analysis continues for the fea-
ture extraction part. Relevant techniques are documented for
later use. Some revision of the project plan is needed since
background research took longer time than expected and im-
plementation started before scheduled.

Milestone 2:
Not reached.

Week5(18/7 −
24/7)

System design & documentation: Design begins. Implemen-
tation proceeds and the code for the experiment is completed.
Documentation is carried out in parallel to the design. The
�nished parts of the report are now as follows: layout and
structure, feature extraction references and keywords, some
considerations regarding the implementation.
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Tasks Milestones
Week6(25/7 −
31/7)

System design & documentation + Implementation + Test-
ing & result gathering: Implementation proceeds. Basic �l-
tering is done on borrowed data. The borrowed data is used
to explore di�erent techniques and MATLABs implementa-
tions of popular methods. The experiments require the robots
to have lights which serve as clues in the experiment. This
should be ready next week.

Milestone 3:
Reached on
time.

Week7(1/8−7/8) Implementation + Testing & result gathering: Code for ex-
periments ready. Pioneer robots in the labs been �tted with
equipment which omits light clues during the experiment. Im-
plementation of signal processing part proceeds.

Milestone 4:
Reached on
time.

Week8(8/8 −
14/8)

Testing & result gathering + Implementation & Testing doc-
umented: Implementation, Testing and result gathering con-
tinue. Experiment 1 completed and that data is used for test-
ing. The results can not be compared to data from subject 2
since it was too contaminated with muscle signals. Documen-
tation of testing falls behind because of corrupt data from ex-
periment 2. Hence, experiment 3 is scheduled for next week.

Milestone
5: Partly
reached.

Week9(15/8 −
21/8)

Implementation & Testing documented: Continuing with
tasks from last week. There have been some delays because
of the corrupt data. Also, implementation took longer than
expected.

Milestone 6:
Not reached.

Week10(22/8 −
28/8)

Revision of results and documents: Implementation and
Testing documented. Additional analysis of data. Prepara-
tion for presentation begins.

Milestone 7:
Reached on
time

Week11(29/8 −
4/9)

Preparation for presentation: Preparation for presentation
continues. Presentation scheduled on Friday the 2nd.

Week12(5/9 −
11/9)

Documentation

Week13(12/9 −
18/9)

Documentation
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Figure D.1: The original Gantt diagram.
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